Matching Items (156)
132548-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and

Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and AD have been mixed and unclear. In order to better understand the role of the environment and toxic substances on AD, we conducted a literature review and geospatial analysis of environmental, specifically wastewater, contaminants that have biological plausibility for increasing risk of development or exacerbation of AD. This literature review assisted us in selecting 10 wastewater toxic substances that displayed a mixed or one-sided relationship with the symptoms or prevalence of Alzheimer’s for our data analysis. We utilized data of toxic substances in wastewater treatment plants and compared them to the crude rate of AD in the different Census regions of the United States to test for possible linear relationships. Using data from the Targeted National Sewage Sludge Survey (TNSSS) and the Centers for Disease Control and Prevention (CDC), we developed an application using R Shiny to allow users to interactively visualize both datasets as choropleths of the United States and understand the importance of this area of research. Pearson’s correlation coefficient was calculated resulting in arsenic and cadmium displaying positive linear correlations with AD. Other analytes from this statistical analysis demonstrated mixed correlations with AD. This application and data analysis serve as a model in the methodology for further geospatial analysis on AD. Further data analysis and visualization at a lower level in terms of scope is necessary for more accurate and reliable evidence of a causal relationship between the wastewater substance analytes and AD.
GitHub Repository: https://github.com/komal-agrawal/AD_GIS.git
ContributorsAgrawal, Komal (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133696-Thumbnail Image.png
Description
The gastrointestinal (GI) tract is home to a complex and diverse microbial ecosystem that contributes to health or disease in many aspects. While bacterial species are the majority in the GI tract, their cohabitants, fungal species, should not be forgotten. Children with autism spectrum disorder (ASD) often suffer from GI

The gastrointestinal (GI) tract is home to a complex and diverse microbial ecosystem that contributes to health or disease in many aspects. While bacterial species are the majority in the GI tract, their cohabitants, fungal species, should not be forgotten. Children with autism spectrum disorder (ASD) often suffer from GI disorders and associated symptoms, implying a role the bacterial and fungal gut microbiota play in maintaining human health. The irregularities in GI symptoms can negatively affect the overall quality of life or even worsen behavioral symptoms the children present. Even with the increase in the availability of next-generation sequencing technologies, the composition and diversities of fungal microbiotas are understudied, especially in the context of ASD. We therefore aimed to investigate the gut mycobiota of 36 neurotypical children and 38 children with ASD. We obtained stool samples from all participants, as well as autism severity and GI symptom scores to help us understand the effect the mycobiome has on these symptoms. By targeting the fungal internal transcribed spacer (ITS) and bacterial 16S rRNA V4 regions, we obtained fungal and bacterial amplicon sequences, from which we investigated the diversities, composition, and potential link between two different ecological clades. From fungal amplicon sequencing results, we observed a significant decrease in the observed fungal OTUs in children with ASD, implying a lack of potentially beneficial fungi in ASD subjects. We performed Bray-Curtis principal coordinates analysis and observed significant differences in fungal microbiota composition between the two groups. Taxonomic analysis showed higher relative abundances of Candida , Pichia, Penicillium , and Exophiala in ASD subjects, yet due to a large dispersion of data, the differences were not statistically significant. Interestingly, we observed a bimodal distribution of Candida abundances within children with ASD. Candida's relative abundance was not significantly correlated with GI scores, but children with high Candida relative abundances presented significantly higher Autism Treatment Evaluation Checklist (ATEC) scores, suggesting a role of Candida on ASD behavioral symptoms. Regarding the bacterial gut microbiota, we found marginally lower observed OTUs and significantly lower relative abundance of Prevotella in the ASD group, which was consistent with previous studies. Taken together, we demonstrated that autism is closely linked with a distinct gut mycobiota, characterized by a loss of fungal and bacterial diversity and an altered fungal and bacterial composition.
ContributorsPatel, Jigar (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Kang, Dae Wook (Committee member) / Adams, James (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134050-Thumbnail Image.png
Description
The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented

The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented by negative values for oxidation-reduction potential (ORP), which can be maintained through the addition of reducing agents such as ZVI, or to a lesser extent, the fermentation of added substrates such as lactate. Microcosm conditions represented distance from an in-situ treatment injection well and contained different types of iron species and dechlorinating bioaugmentation cultures. Diminishing efficacy of microbial reductive dechlorination along a gradient away from the injection zone was observed, characterized by increasing ORP and decreasing pH. Results also suggested that the use of particular biostimulation substrates is key to prioritizing the dechlorination reaction against competing microbial and abiotic processes by supplying electrons needed for microbial dechlorination.
ContributorsMouti, Aatikah (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134434-Thumbnail Image.png
Description
Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments

Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments in anaerobic environments. We define the total biological hydrogen demand as the sum of all electron acceptors that can be used by hydrogen-oxidizing microorganisms. Three sets of anaerobic microcosms were set up with different soils/sediments, named Carolina, Garden, and ASM. The microcosms included 25g of soil/sediment and 75 mL of anaerobic medium. 10 mL of hydrogen were pulse-fed for 100 days. Hydrogen consumption and methane production were tracked using gas chromatography. Chemical analysis of each soil was performed at the beginning of the experiment to determine the concentration of electron acceptors in the soils/sediments, including nitrate, sulfate, iron and bicarbonate. An analysis of the microbial community was done at t = 0 and at the end of the 100 days to examine changes in the microbial community due to the metabolic processes occurring as hydrogen was consumed. Carolina consumed 9810 43 mol of hydrogen and produced 19,572 2075 mol of methane. Garden consumed 4006 33 mol of hydrogen and produced 7,239 543 mol of methane. Lastly, ASM consumed 1557 84 mol of hydrogen and produced 1,325 715 mol of methane. I conclude that the concentration of bicarbonate initially present in the soil had the most influence over the hydrogen demand and microbial community enrichment. To improve this research, I recommend that future studies include a chemical analysis of final soil geochemistry conditions, as this will provide with a better idea of what pathway the hydrogen is taking in each soil.
ContributorsLuna Aguero, Marisol (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135250-Thumbnail Image.png
Description
In the United States, the prevalence of pediatric obesity has increased to 17% in the general population and even more so in the Hispanic pediatric population to 22.4%. These children are at a higher risk for associated comorbidities, including cardiovascular disease and insulin resistance. The purpose of the following study

In the United States, the prevalence of pediatric obesity has increased to 17% in the general population and even more so in the Hispanic pediatric population to 22.4%. These children are at a higher risk for associated comorbidities, including cardiovascular disease and insulin resistance. The purpose of the following study is to determine the effectiveness of the Nutrition and Health Awareness curriculum at reducing childhood obesity by evaluating alterations in the gut microbial composition, diet, and overall health of the students throughout the five-week program. Nutrition and Health Awareness (NHA) is a student organization that strives to reduce the prevalence of obesity, diabetes, and cardiovascular diseases, specifically in children, by providing active nutrition education services through peer mentoring in elementary schools and community programs. This study went through ASU's Institutional Review Board process and all forms were translated into Spanish. The control group maintained their normal routines and the experimental group received the 5 week NHA program and then continued with their normal routines. Anthropometric measures (Body Mass Index, waist-to-hip ratio, and blood pressure), diet measures (Hispanic food frequency questionnaire), fecal swabs, and content surveys were collected on weeks 0, 5, and 8. Contrary to expected, alpha diversity, kilocalorie intake, and macronutrient intake decreased as the study progressed for both the control and experimental groups. Anthropometric measurements were relatively stable. Though not statistically significant, the greatest difference in time points is between weeks 1 and 8. This decrease in alpha diversity and kilocalorie intake could be due to a change in environment since the children started school on week 8. Future implications of this study are that parental involvement is necessary for an effective, sustainable change in these children. More research in different settings is necessary to determine NHA's effectiveness
ContributorsPatel, Kapila Cristina (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Whisner, Corrie (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135273-Thumbnail Image.png
Description
Microorganisms can produce metabolites in the gut including short chain fatty acids, vitamins, and amino acids. Certain metabolites produced in the gut can affect the brain through changes in neurotransmitter concentrations. Serotonin, a neurotransmitter, is associated with mood, appetite, and sleep. Up to 90% of serotonin synthesis

Microorganisms can produce metabolites in the gut including short chain fatty acids, vitamins, and amino acids. Certain metabolites produced in the gut can affect the brain through changes in neurotransmitter concentrations. Serotonin, a neurotransmitter, is associated with mood, appetite, and sleep. Up to 90% of serotonin synthesis is located in the gut, by human enterochromaffin cells. Bacteria known to biosynthesize tryptophan, precursor to serotonin, include Escherichia coli, Enterococcus and Streptococcus. Tryptophan is synthesized by bacteria with the enzyme tryptophan synthase and requires Vitamin B6 (Pyridoxal). We hypothesize that gut isolates from surgical weight loss patients can enhance tryptophan production, which relies on vitamin B6 availability. Our goal was to isolate bacteria in order to test for tryptophan production and to determine how Vitamin B6 concentrations could affect tryptophan production. We isolated gut bacteria was from successful surgical weight loss patient with selective pressures for Enterobacter isolates and Enterococcus isolates. We tested the isolates were tested to determine if they could biosynthesize tryptophan in-vitro. Bacterial cultures were enriched with yeast and enriched with serine and indole, substrates necessary for tryptophan biosynthesis. We analyzed the supernatant samples for tryptophan production using GC-FID. Bacterial isolates most closely related to E. coli and Klebsiella based on 16S rRNA gene sequences, produced tryptophan in vitro. While under serine & indole media conditions, R1, the isolate most similar to Klebsiella produced more tryptophan than R14, the isolate most similar to E. coli. We tested the R1 isolate with a gradient of vitamin B6 concentrations from 0.02 µg/mL to 0.2 µg/mL to determine its effect on tryptophan production. When less than 0.05 µg/mL of Vitamin B6 was added, tryptophan production at 6 hours was higher than tryptophan production with Vitamin B6 concentrations at 0.05 µg/mL and above. The production and consumption of tryptophan by Klebsiella under 0 µg/mL and 0.02 µg/mL concentrations of Vitamin B6 occurred at a faster rate when compared to concentrations 0.05 µg/mL or higher of Vitamin B6.
ContributorsYee, Emily L. (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Ilhan, Zehra (Committee member) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
160716-Thumbnail Image.png
Description

With technology changing how documents (of all types and format) are created, shared, and used, library personnel make interpretations of copyright law daily. Very little research has been done on how library personnel understand copyright law and their role in interpreting it as part of their daily work, how comfortable

With technology changing how documents (of all types and format) are created, shared, and used, library personnel make interpretations of copyright law daily. Very little research has been done on how library personnel understand copyright law and their role in interpreting it as part of their daily work, how comfortable they are with this task, what types of training they have received, or what types of training they believe they need.

To help fill this gap, librarians from California State University Chico, Portland Community College, and Arizona State University received a planning grant from the Institute of Museum and Library Services to conduct a survey on copyright education in the 13 states in the Western United States. Unlike previous related studies, we sought responses from all types of libraries, library workers, and especially traditionally underrepresented groups.

With the hypothesis that libraries in the Western U.S. have unique barriers to quality copyright education, we conducted a survey and focus groups with library personnel regarding their prior copyright education; the need for additional education; and what barriers they face in accessing that education.

This is our final report as submitted to IMLS, planning grant log number RE-246437-OLS-20

ContributorsBridgewater, Rachel (Contributor) / Gauthier, Donna (Contributor) / Grondin, Karen (Contributor) / Jedry, Jordan (Contributor) / Lane, Cassandra, 1971- (Contributor) / Newell, Patrick (Contributor) / Noble, Jaclyn (Contributor) / Perry, Anali Maughan (Contributor) / Robinson, Max (Contributor) / Weber, Lori M. (Contributor)
Created2021
171775-Thumbnail Image.png
Description
Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra

Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra (Daring Lake, Canada) to boreal forest (Lutose, Canada) to temperate broadleaf and mixed forest (Bog Lake, MN and Chicago Bog, NY) biomes to assess patterns of microbial abundance across the climate gradient. Principal component regression analysis of the microbial community and environmental variables determined that mean annual temperature (MAT) (r2=0.85), mean annual precipitation (MAP) (r2=0.88), and soil temperature (r2=0.77), were the top significant drivers of microbial community composition (p < 0.001). Niche breadth analysis revealed the relative abundance of Intrasporangiaceae, Methanobacteriaceae and Candidatus Methanoflorentaceae fam. nov. to increase when MAT and MAP decrease. The same analysis showed Spirochaetaceae, Methanosaetaceae and Methanoregulaceae to increase in relative abundance when MAP, soil temperature and MAT increased, respectively. These findings indicated that climate variables were the strongest predictors of microbial community composition and that certain taxa, especially methanogenic families demonstrate distinct patterns across the climate gradient. To evaluate microbial production of methanogenic substrates, I carried out High Resolution-DNA-Stable Isotope Probing (HR-DNA-SIP) to evaluate the active portion of the community’s intermediary ecosystem metabolic processes. HR-DNA-SIP revealed several challenges in efficiency of labelling and statistical identification of responders, however families like Veillonellaceae, Magnetospirillaceae, Acidobacteriaceae 1, were found ubiquitously active in glucose amended incubations. Differences in metabolic byproducts from glucose amendments show distinct patterns in acetate and propionate accumulation across sites. Families like Spirochaetaceae and Sphingomonadaceae were only found to be active in select sites of propionate amended incubations. By-product analysis from propionate incubations indicate that the northernmost sites were acetate-accumulating communities. These results indicate that microbial communities found in poor fen northern peatlands are strongly influenced by climate variables predicted to change under current climate scenarios. I have identified patterns of relative abundance and activity of select microbial taxa, indicating the potential for climate variables to influence the metabolic pathway in which carbon moves through peatland systems.
ContributorsSarno, Analissa Flores (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Childers, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
168837-Thumbnail Image.png
Description

Widespread use of halogenated organic compounds for commercial and industrial purposes makes halogenated organic pollutants (HOPs) a global challenge for environmental quality. Current wastewater treatment plants (WWTPs) are successful at reducing chemical oxygen demand (COD), but the removal of HOPs often is poor. Since HOPs are xenobiotics, the biodegradation of

Widespread use of halogenated organic compounds for commercial and industrial purposes makes halogenated organic pollutants (HOPs) a global challenge for environmental quality. Current wastewater treatment plants (WWTPs) are successful at reducing chemical oxygen demand (COD), but the removal of HOPs often is poor. Since HOPs are xenobiotics, the biodegradation of HOPs is usually limited in the WWTPs. The current methods for HOPs treatments (e.g., chemical, photochemical, electrochemical, and biological methods) do have their limitations for practical applications. Therefore, a combination of catalytic and biological treatment methods may overcome the challenges of HOPs removal.This dissertation investigated a novel catalytic and biological synergistic platform to treat HOPs. 4-chlorophenol (4-CP) and halogenated herbicides were used as model pollutants for the HOPs removal tests. The biological part of experiments documented successful co-oxidation of HOPs and analog non-halogenated organic pollutants (OPs) (as the primary substrates) in the continuous operation of O2-based membrane biofilm reactor (O2-MBfR). In the first stage of the synergistic platform, HOPs were reductively dehalogenated to less toxic and more biodegradable OPs during continuous operation of a H2-based membrane catalytic-film reactor (H2-MCfR). The synergistic platform experiments demonstrated that OPs generated in the H2-MCfR were used as the primary substrates to support the co-oxidation of HOPs in the subsequent O2-MBfR. Once at least 90% conversation of HOPs to OPs was achieved in the H2-MCfR, the products (OPs to HOPs mole ratio >9) in the effluent could be completely mineralized through co-oxidation in O2-MBfR. By using H2 gas as the primary substrate, instead adding the analog OP, the synergistic platform greatly reduced chemical costs and carbon-dioxide emissions during HOPs co-oxidation.

ContributorsLuo, Yihao (Author) / Rittmann, Bruce (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2022