Matching Items (674)
150037-Thumbnail Image.png
Description
Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate

Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate biomass in its interior (protected from UV light and free radicals). First, this carrier was tested for ICPB in a continuous-flow photocatalytic circulating-bed biofilm reactor (PCBBR) to mineralize biorecalcitrant organic: 2,4,5-trichlorophenol (TCP). Four mechanisms possibly acting of ICPB were tested separately: TCP adsorption, UV photolysis/photocatalysis, and biodegradation. The carrier exhibited strong TCP adsorption, while photolysis was negligible. Photocatalysis produced TCP-degradation products that could be mineralized and the strong adsorption of TCP to the carrier enhanced biodegradation by relieving toxicity. Validating the ICPB concept, biofilm was protected inside the carriers from UV light and free radicals. ICPB significantly lowered the diversity of the bacterial community, but five genera known to biodegrade chlorinated phenols were markedly enriched. Secondly, decolorization and mineralization of reactive dyes by ICPB were investigated on a refined Ti2-coated biofilm carrier in a PCBBR. Two typical reactive dyes: Reactive Black 5 (RB5) and Reactive Yellow 86 (RY86), showed similar first-order kinetics when being photocatalytically decolorized at low pH (~4-5), which was inhibited at neutral pH in the presence of phosphate or carbonate buffer, presumably due to electrostatic repulsion from negatively charged surface sites on Ti2, radical scavenging by phosphate or carbonate, or both. In the PCBBR, photocatalysis alone with Ti2-coated carriers could remove RB5 and COD by 97% and 47%, respectively. Addition of biofilm inside macroporous carriers maintained a similar RB5 removal efficiency, but COD removal increased to 65%, which is evidence of ICPB despite the low pH. A proposed ICPB pathway for RB5 suggests that a major intermediate, a naphthol derivative, was responsible for most of the residual COD. Finally, three low-temperature sintering methods, called O, D and DN, were compared based on photocatalytic efficiency and Ti2 adherence. The DN method had the best Ti2-coating properties and was a successful carrier for ICPB of RB5 in a PCBBR.
ContributorsLi, Guozheng (Author) / Rittmann, Bruce E. (Thesis advisor) / Halden, Rolf (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
150341-Thumbnail Image.png
Description
A numerical study of incremental spin-up and spin-up from rest of a thermally- stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface is presented. Thermally stratified spin-up is a typical example of baroclinity, which is initiated by a sudden increase in

A numerical study of incremental spin-up and spin-up from rest of a thermally- stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface is presented. Thermally stratified spin-up is a typical example of baroclinity, which is initiated by a sudden increase in rotation rate and the tilting of isotherms gives rise to baroclinic source of vorticity. Research by (Smirnov et al. [2010a]) showed the differences in evolution of instabilities when Dirichlet and Neumann thermal boundary conditions were applied at top and bottom walls. Study of parametric variations carried out in this dissertation confirmed the instability patterns observed by them for given aspect ratio and Rossby number values greater than 0.5. Also results reveal that flow maintained axisymmetry and stability for short aspect ratio containers independent of amount of rotational increment imparted. Investigation on vorticity components provides framework for baroclinic vorticity feedback mechanism which plays important role in delayed rise of instabilities when Dirichlet thermal Boundary Conditions are applied.
ContributorsKher, Aditya Deepak (Author) / Chen, Kangping (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149965-Thumbnail Image.png
Description
Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured

Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured using a digital camera and the images are stored onto a datalogger, these images are retrieved using a cellular/ satellite modem. A MATLAB program was designed to obtain the level of water by just entering the file name into to the program, a curve fit model was created to determine the contrast parameters. The contrast parameters were obtained using the data obtained from the gray scale image mainly the mean and variance of the intensity values. The enhanced images are used to determine the level of water by taking pixel intensity plots along the region of interest. The level of water obtained is accurate to less than 2% of the actual level of water observed from the image. High speed imaging in micro channels have various application in industrial field, medical field etc. In medical field it is tested by using blood samples. The experimental procedure proposed determines the flow duration and the defects observed in these channel using a fluid introduced into the micro channel the fluid being water based dye and whole milk. The viscosity of the fluid shows different types of flow patterns and defects in the micro channel. The defects observed vary from a small effect to the flow pattern to an extreme defect in the channel such as obstruction of flow or deformation in the channel. The sample needs to be further analyzed by SEM to get a better insight on the defects.
ContributorsShasedhara, Abhijeet Bangalore (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
150153-Thumbnail Image.png
Description
A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in

A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in the new method, higher-order gradients are used in place of the Hessian. The method is applied to the finite element solution of the incompressible Navier-Stokes equations on model problems. Results indicate that a significant efficiency benefit is realized.
ContributorsShortridge, Randall (Author) / Chen, Kang Ping (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Wells, Valana (Committee member) / Huang, Huei-Ping (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2011
150317-Thumbnail Image.png
Description
To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the

To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the AS process, providing additional sorbent for influent particulate chemical oxygen demand (PCOD) biosorption in contact tanks. Biosorbed PCOD is transported to the AD, where it is converted to methane. The aim of this study is to provide mass balance and microbial community analysis (MCA) of SWT's two hybrid and one conventional pilot plant trains and mathematical modeling of the hybrid process including a novel model of biosorption. A detailed mass balance was performed on each tank and the overall system. The mass balance data supports the hybrid process is more sustainable: It produces 1.5 to 5.5x more methane and 50 to 83% less sludge than the conventional train. The hybrid's superior performance is driven by 4 to 8 times longer solid retention times (SRTs) as compared to conventional trains. However, the conversion of influent COD to methane was low at 15 to 22%, and neither train exhibited significant nitrification or denitrification. Data were inconclusive as to the role of biosorption in the processes. MCA indicated the presence of Archaea and nitrifiers throughout both systems. However, it is inconclusive as to how active Archaea and nitrifiers are under anoxic, aerobic, and anaerobic conditions. Mathematical modeling confirms the hybrid process produces 4 to 20 times more methane and 20 to 83% less sludge than the conventional train under various operating conditions. Neither process removes more than 25% of the influent nitrogen or converts more that 13% to nitrogen gas due to biomass washout in the contact tank and short SRTs in the stabilization tank. In addition, a mathematical relationship was developed to describe PCOD biosorption through adsorption to biomass and floc entrapment. Ultimately, process performance is more heavily influenced by the higher AD SRTs attained when sludge is recycled through the system and less influenced by the inclusion of biosorption kinetics.
ContributorsYoung, Michelle Nichole (Author) / Rittmann, Bruce E. (Thesis advisor) / Fox, Peter (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
150092-Thumbnail Image.png
Description
The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.
ContributorsParthasarathy, Praveen Kumar (Author) / Adrian, Ronald (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
137210-Thumbnail Image.png
Description
The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system

The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system and discusses the proper design techniques necessary to utilize the performance boosting potential of a tuned exhaust system for a four-stroke engine. These design considerations are then applied to Arizona State University's Formula SAE vehicle by comparing the existing system to a properly tuned system. An inexpensive testing method, developed specifically for this project, is used to test the effectiveness of the current design. The results of the test determined that the current design is ineffective at scavenging neighboring pipes of exhaust gasses and should be redesigned for better performance.
ContributorsKnutsen, Jeffrey Scott (Author) / Huang, Huei-Ping (Thesis director) / Steele, Bruce (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
152296-Thumbnail Image.png
Description
Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level.

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.
ContributorsRiaño, Alejandro (Author) / Mays, Larry W. (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151645-Thumbnail Image.png
Description
Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the

Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water droplets. This will then lead to more droplets exiting the inlet and at larger diameters.
ContributorsHargrave, Kevin (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kaangping (Committee member) / Arizona State University (Publisher)
Created2013