Matching Items (41)
150890-Thumbnail Image.png
Description
Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this ga

Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this gap between simulation and observation by rendering the model output in image format which is then processed by tools commonly used in observational astronomy. Images are synthesized in various filters by folding the output of cosmological simulations of gasdynamics with star-formation and dark matter with the Bruzual- Charlot stellar population synthesis models. A variation of the Virgo-Gadget numerical simulation code is used with the hybrid gas and stellar formation models of Springel and Hernquist (2003). Outputs taken at various redshifts are stacked to create a synthetic view of the simulated star clusters. Source Extractor (SExtractor) is used to find groupings of stellar populations which are considered as galaxies or galaxy building blocks and photometry used to estimate the rest frame luminosities and distribution functions. With further refinements, this is expected to provide support for missions such as JWST, as well as to probe what additional physics are needed to model the data. The results show good agreement in many respects with observed properties of the galaxy luminosity function (LF) over a wide range of high redshifts. In particular, the slope (alpha) when fitted to the standard Schechter function shows excellent agreement both in value and evolution with redshift, when compared with observation. Discrepancies of other properties with observation are seen to be a result of limitations of the simulation and additional feedback mechanisms which are needed.
ContributorsMorgan, Robert (Author) / Windhorst, Rogier A (Thesis advisor) / Scannapieco, Evan (Committee member) / Rhoads, James (Committee member) / Gardner, Carl (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150947-Thumbnail Image.png
Description
Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have

Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface density of the actively accreting layers falls rapidly with distance from the protostar, leading to a net outward flow of mass from ~0.1 to 3 AU. The clearing out of the innermost zones is possibly consistent with the observed behavior of recently discovered "transition disks."
ContributorsLesniak, Michael V., III (Author) / Desch, Steven J. (Thesis advisor) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Starrfield, Sumner (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150723-Thumbnail Image.png
Description
The first part of this dissertation presents the implementation of Bayesian statistics with galaxy surface luminosity (SL) prior probabilities to improve the ac- curacy of photometric redshifts. The addition of the SL prior probability helps break the degeneracy of spectro-photometric redshifts (SPZs) between low redshift 4000 A break galaxies and

The first part of this dissertation presents the implementation of Bayesian statistics with galaxy surface luminosity (SL) prior probabilities to improve the ac- curacy of photometric redshifts. The addition of the SL prior probability helps break the degeneracy of spectro-photometric redshifts (SPZs) between low redshift 4000 A break galaxies and high redshift Lyman break galaxies which are mostly catas- trophic outliers. For a sample of 1138 galaxies with spectroscopic redshifts in the GOODS North and South fields at z < 1.6, the application of the surface luminosity prior reduces the fraction of galaxies with redshift deviation sigma(z) > 0.2 from 15.0% to 10.4%. The second part of this dissertation presents the study of the chemical evolution of the star-forming galaxies. The Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) grism Survey effectively selects emission line galaxies (ELGs) to mAB ~ 27. Follow-up Magellan LDSS3+IMACS spectroscopy of the HST/ACS PEARS ELGs confirms an accuracy of sigma_z = 0.006 for the HST/ACS PEARS grism redshifts. The luminosity-metallicity (L-Z) relation and the mass-metallicity (M-Z) relation of the PEARS ELGs at z ~ 0.6 are offset by ~ - 0.8 dex in metallicity for a given rest-frame B absolute magnitude and stellar mass relative to the local relations from SDSS galaxies. The offsets in both relations are ~ - 0.4 dex larger than that given by other samples at same redshifts, which are demonstrated to be due to the selection of different physical properties of the PEARS ELGs: low metallicities, very blue colors, small sizes, compact disturbed morphologies, high SSFR > 10^-9 yr^-1 , and high gas fraction. The downsizing effect, the tidal interacting induced inflow of metal-poor gas, and the SNe driven galactic winds outflows, may account for the significant offset of the PEARS galaxies in the L-Z and the M-Z relations relative to the local relations. The detection of the emission lines of ELGs down to m ~ 26 mag in the HST/ACS PEARS + HST/WCF3 ERS NIR composit grism spectra enables to extend the study of the evolution of the L-Z and M-Z relations to 0.6 < z < 2.4.
ContributorsXia, Lifang (Author) / Malhotra, Sangeeta (Thesis advisor) / Rhoads, James (Committee member) / Scannapieco, Evan (Committee member) / Jansen, Rolf (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
156378-Thumbnail Image.png
Description
The Milky Way galaxy is a powerful dynamic system that is highly efficient at recycling material. Stars are born out of intergalactic gas and dust, fuse light elements into heavier elements in their cores, then upon stellar death spread material throughout the galaxy, either by diffusion of planetary nebula or

The Milky Way galaxy is a powerful dynamic system that is highly efficient at recycling material. Stars are born out of intergalactic gas and dust, fuse light elements into heavier elements in their cores, then upon stellar death spread material throughout the galaxy, either by diffusion of planetary nebula or by explosive events for high mass stars, and that gas must cool and condense to form stellar nurseries. Though the stellar lifecycle has been studied in detail, relatively little is known about the processes by which hot, diffuse gas ejected by dying stars cools and conglomerates in the interstellar medium (ISM). Much of this mystery arises because only recently have instruments with sufficient spatial and spectral resolution, sensitivity, and bandwidth become available in the terahertz (THz) frequency spectrum where these clouds peak in either thermal or line emission. In this dissertation, I will demonstrate technology advancement of instruments in this frequency regime with new characterization techniques, machining strategies, and scientific models of the spectral behavior of gas species targeted by these instruments.

I begin this work with a description of radiation pattern measurements and their use in astronomical instrument characterization. I will introduce a novel technique to measure complex (phase-sensitive) field patterns using direct detectors. I successfully demonstrate the technique with a single pixel microwave inductance detectors (MKID) experiment. I expand that work by measuring the APEX MKID (A-MKID) focal plane array of 880 pixel detectors centered at 350 GHz. In both chapters I discuss the development of an analysis pipeline to take advantage of all information provided by complex field mapping. I then discuss the design, simulation, fabrication processes, and characterization of a circular-to-rectangular waveguide transformer module integrated into a circularly symmetric feedhorn block. I conclude with a summary of this work and how to advance these technologies for future ISM studies.
ContributorsDavis, Kristina (Author) / Groppi, Christopher E (Thesis advisor) / Bowman, Judd (Committee member) / Mauskopf, Philip (Committee member) / Jellema, Willem (Committee member) / Pan, George (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2018
157407-Thumbnail Image.png
Description
One of the most fundamental questions in astronomy is how the Universe evolved to become the highly structured system of stars and galaxies that we see today. The answer to this question can be largely uncovered in a relatively unexplored period in the history of the Universe known as the

One of the most fundamental questions in astronomy is how the Universe evolved to become the highly structured system of stars and galaxies that we see today. The answer to this question can be largely uncovered in a relatively unexplored period in the history of the Universe known as the Epoch of Reionization (EoR), where radiation from the first generation of stars and galaxies ionized the neutral hydrogen gas in the intergalactic medium. The reionization process created "bubbles" of ionized regions around radiating sources that perturbed the matter density distribution and influenced the subsequent formation of stars and galaxies. Exactly how and when reionization occurred are currently up for debate. However, by studying this transformative period we hope to unravel the underlying astrophysics that governs the formation and evolution of the first stars and galaxies.

The most promising method to study reionization is 21 cm tomography, which aims to map the 3D distribution of the neutral hydrogen gas using the 21 cm emission lines from the spin-flip transition of neutral hydrogen atoms. Several radio interferometers operating at frequencies below 200 MHz are conducting these experiments, but direct images of the observed fields are limited due to contamination from astrophysical foreground sources and other systematics, forcing current and upcoming analyses to be statistical.

In this dissertation, I studied one-point statistics of the 21 cm brightness temperature intensity fluctuations, focusing on how measurements from observations would be biased by different contaminations and instrumental systematics and how to mitigate them. I develop simulation tools to generate realistic mock 21 cm observations of the Hydrogen Epoch of Reionization Array (HERA), a new interferometer being constructed in the Karoo desert in South Africa, and perform sensitivity analysis of the telescope to one-point statistics using the mock observations. I show that HERA will be able to measure 21 cm one-point statistics with sufficient sensitivity if foreground contaminations can be sufficiently mitigated. In the presence of foreground, I develop a rolling foreground avoidance filter technique and demonstrate that it can be used to obtain noise-limited measurements with HERA. To assess these techniques on real data, I obtain measurements from the legacy data from the first season observation of the Murchison Widefield Array (MWA) and perform additional high-precision radio interferometric simulations for comparison. Through these works, I have developed new statistical tools that are complementary to the power spectrum method that is currently the central focus of the majority of analyses. In addition to confirming power spectrum detections, one-point statistics offer additional information on the distribution of the 21 cm fluctuations, which is directly linked to the astrophysics of structure formation.
ContributorsKittiwisit, Piyanat (Author) / Bowman, Judd D. (Thesis advisor) / Groppi, Christopher E. (Committee member) / Jacobs, Daniel C. (Committee member) / Scannapieco, Evan (Committee member) / Butler, Nathaniel R. (Committee member) / Arizona State University (Publisher)
Created2019
156741-Thumbnail Image.png
Description
Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few

Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation is consistent with that found from the star-forming galaxies at z $\sim$ 2.5. In the second study, a new large sample of 835 green peas in the redshift range z = 0.011 -- 0.411 are assembled from Data Release 13 of the Sloan Digital Sky Survey (SDSS) with the equivalent width of the line [OIII]$\lambda$5007 $>$ 300\AA\ or the equivalent width of the line H$\beta$ $>$ 100\AA. The size of this new sample is ten times that of the original 80 star-forming green pea sample. With reliable T$_e$-based gas-phase metallicity measurements for the 835 green peas, a new empirical calibration of R23 (defined as ([OIII]$\lambda$$\lambda$4959,5007 + [OII]$\lambda$$\lambda$3726,3729)/H$\beta$) for strong line emitters is then derived. The double-value degeneracy of the metallicity is broken for galaxies with large ionization parameter (which manifests as log([OIII]$\lambda$$\lambda$4959,5007/[OII]$\lambda$$\lambda$3726,3729) $\geq$ 0.6). This calibration offers a good way to estimate metallicities for extreme emission-line galaxies and high-redshift LAEs. The third study presents stellar mass measurements and the stellar mass-metallicity relation of 828 green peas from the second study. The stellar mass covers 6 orders of magnitude in the range 10$^{5}$ -- 10$^{11}$ M$_{\odot}$, with a median value of 10$^{8.8}$ M$_{\odot}$. The stellar mass-metallicity relation of green peas is flatter and displays about 0.2 - 0.5 dex offset to lower metallicities in the range of stellar mass higher than 10$^{8}$ M$_{\odot}$ compared to the local SDSS star-forming galaxies. A significant dependence of the stellar mass-metallicity relation on star formation rate is not found in this work.
ContributorsJiang, Tianxing (Author) / Malhotra, Sangeeta (Thesis advisor) / Rhoads, James E (Committee member) / Scannapieco, Evan (Committee member) / Borthakur, Sanchayeeta (Committee member) / Jansen, Rolf A (Committee member) / Arizona State University (Publisher)
Created2018
156627-Thumbnail Image.png
Description
The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of

The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of the current frontiers in astronomy and astrophysics.

In this work I present an improved model for following the formation of Pop III stars, their effects on early galaxy evolution, and how we might search for them. I make use of a new subgrid model of turbulent mixing to accurately follow the time scales required to mix supernova (SN) ejecta -- enriched with heavy elements -- into the pristine gas. I implement this model within a large-scale cosmological simulation and follow the fraction of gas with metallicity below a critical value marking the boundary between Pop III and metal enriched Population II (Pop II) star formation. I demonstrate that accounting for subgrid mixing results in a Pop III stars formation rate that is 2-3 times higher than standard models with the same physical resolution.

I also implement and track a new "Primordial metals" (PM) scalar that tracks the metals generated by Pop III SNe. These metals are taken up by second generation stars and likely result in a subclass of carbon-enhanced, metal-poor (CEMP) stars. By tracking both regular metals and PM, I can model, in post-processing, the elemental abundances of simulation stars. I find good agreement between observations of CEMP-no Milky Way halo stars and second generation stars within the simulation when assuming the first stars had a typical mass of 60 M☉, providing clues as to the Pop III initial mass function.
ContributorsSarmento, Richard John (Author) / Scannapieco, Evan (Thesis advisor) / Windhorst, Rogier (Committee member) / Young, Patrick (Committee member) / Timmes, Frank (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
135330-Thumbnail Image.png
ContributorsPowell, Devon (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / Windhorst, Rogier (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136412-Thumbnail Image.png
Description
This project discusses simulation results of star formation by Active Galactic Nuclei (AGN) jets using the WENO method. A typical AGN jet with velocity uj=0.3c, density ρj=10^(-2) H/cm3, and temperature Tj=10^(7) K was injected into a 425 light years square region. The jet passes through a stationary inhomogeneous ambient background

This project discusses simulation results of star formation by Active Galactic Nuclei (AGN) jets using the WENO method. A typical AGN jet with velocity uj=0.3c, density ρj=10^(-2) H/cm3, and temperature Tj=10^(7) K was injected into a 425 light years square region. The jet passes through a stationary inhomogeneous ambient background of temperature Ta=5x10^4 K and density ρa= 2 H/cm^3 to test if AGN jets, by creating bow shocks propagating through the interstellar medium and molecular clouds, can form stars in the densest regions. According to the star formation criteria for gravitational collapse of Cen and Ostriker, the resulting simulations indicate the presence of star formation via AGN jets (1992). The parameters are tuned to match Centaurs A to identify star formation in this galaxy. The simulations will also be run in three dimensions in the future and for longer time intervals to gain a better understanding of the star formation process via AGN jets.
ContributorsFindley, Christina Marie (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
133632-Thumbnail Image.png
Description
Galaxies in the universe are surrounded by a hot medium called the Circum-Galactic Medium (CGM). Present the CGM is gas that forms up clouds which travel within the CGM at speeds that approximately range between 100 km/s and 300 km/s. These gas clouds are very interesting because they play a

Galaxies in the universe are surrounded by a hot medium called the Circum-Galactic Medium (CGM). Present the CGM is gas that forms up clouds which travel within the CGM at speeds that approximately range between 100 km/s and 300 km/s. These gas clouds are very interesting because they play a crucial in the formation of stars within the galaxies and also in the overall evolution of galaxies. The clouds could in fact be thought of as mobile "gas stations" whose sole purpose is facilitate the ionization of elements and ultimately supply gas to galaxies. My thesis project is a follow-up study on CGM gas cloud observations that were made by Borthakur et. al. (2016). Using Cosmic Origins Spectrograph (COS) data from the Hubble Space Telescope (HST), Borthakur et. al. (2016) observed the presence of both Carbon IV (C IV) and Oxygen VI (O IV) but did not observe any Nitrogen V (N V) in the gas cloud when expected to be observable. Therefore, the ultimate goal of my research was to determine whether indeed CGM gas clouds have an actual shortage of the N V ion. My research involves the generation of cosmological simulations of a cold gas cloud that has a radius of 98 parsecs, relative velocity of 200 km/s, density range of 10-3 to -5 and a temperature in the range of ~104 to 5 K, and also a hot CGM that has density in the range of 10-4.5 to -6 particles/cm3 and temperature of approximately 106 K. Traces of N v are observed in my simulations.
ContributorsSaboi, Kezman (Author) / Scannapieco, Evan (Thesis director) / Borthakur, Sanchayeeta (Committee member) / Cottle, JNeil (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05