Matching Items (111)
154025-Thumbnail Image.png
Description
This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For

This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For each city, the land-use maps of 1985 and 2010 from Landsat satellite observation, and a projected land-use map for 2030, are used to represent the past, present, and future. An additional set of simulations for Las Vegas, the largest of the five cities, uses the NLCD 1992 and 2006 land-use maps and an idealized historical land-use map with no urban coverage for 1900.

The study finds that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling during the day. A further analysis of the surface energy balance shows that the decrease in surface Albedo and increase effective emissivity play an important role in shaping the local climate change over urban areas. The emerging urban structures slow down the diurnal wind circulation over the city due to an increased effective surface roughness. This leads to a secondary modification of temperature due to the interaction between the mechanical and thermodynamic effects of urbanization.

The simulations for the five desert cities for 1985 and 2010 further confirm a common pattern of the climatic effect of urbanization with significant nighttime warming and moderate daytime cooling. This effect is confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding areas. The pattern of nighttime warming and daytime cooling remains robust in the simulations for the future climate of the five cities using the projected 2030 land-use maps. Inter-city differences among the five urban areas are discussed.
ContributorsKamal, Samy (Author) / Huang, Huei-Ping (Thesis advisor) / Anderson, James (Thesis advisor) / Herrmann, Marcus (Committee member) / Calhoun, Ronald (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2015
Description

The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the

The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the home to more than a half million people, primarily poor smallholder farmers. In an effort to support the livelihoods and food security of these farmers and the larger Tanzanian population, the country has recently targeted a series of programs to increase agricultural production in the Kilombero Valley and elsewhere in the country. Bridging concepts and methods from land change science, political ecology, and sustainable livelihoods, I present an integrated assessment of the linkages between development and conservation efforts in the Kilombero Valley and the implications for food security.

This dissertation uses three empirical studies to understand the process of development in the Kilombero Valley and to link the priorities and perceptions of conservation and development efforts to the material outcomes in food security and land change. The first paper of this dissertation examines the changes in land use in the Kilombero Valley between 1997 and 2014 following the privatization of agriculture and the expansion of Tanzania’s Kilimo Kwanza program. Remote sensing analysis reveals a two-fold increase in agricultural area during this short time, largely at the expense of forest. Protected areas in some parts of the Valley appear to be deterring deforestation, but rapid agricultural growth, particularly surrounding a commercial rice plantation, has led to loss of extant forest and sustained habitat fragmentation. The second paper focuses examines livelihood strategies in the Valley and claims regarding the role of agrobiodiversity in food security.

The results of household survey reveal no difference or lower food security among households that diversify their agricultural activities. Some evidence, however, emerges regarding the importance of home gardens and crop diversification for dietary diversity. The third paper considers the competing discourses surrounding conservation and development in the Kilombero Valley. Employing q-method, this paper discerns four key viewpoints among various stakeholders in the Valley. While there are some apparently intractable distinctions between among these discourses, consensus regarding the importance of wildlife corridors and the presence of boundary-crossing individuals provide the promise of collaboration and compromise.

ContributorsConnors, John Patrick (Author) / Turner, Billie Lee (Thesis advisor) / Eakin, Hallie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2015
154137-Thumbnail Image.png
Description
The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can

The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can be used to answer a wide range of important questions in epidemiology, computer network security, etc. This dissertation studies the fundamental theory and the design of efficient and robust algorithms for the information source detection problem.

For tree networks, the maximum a posterior (MAP) estimator of the information source is derived under the independent cascades (IC) model with a complete snapshot and a Short-Fat Tree (SFT) algorithm is proposed for general networks based on the MAP estimator. Furthermore, the following possibility and impossibility results are established on the Erdos-Renyi (ER) random graph: $(i)$ when the infection duration $<\frac{2}{3}t_u,$ SFT identifies the source with probability one asymptotically, where $t_u=\left\lceil\frac{\log n}{\log \mu}\right\rceil+2$ and $\mu$ is the average node degree, $(ii)$ when the infection duration $>t_u,$ the probability of identifying the source approaches zero asymptotically under any algorithm; and $(iii)$ when infection duration $
In practice, other than the nodes' states, side information like partial timestamps may also be available. Such information provides important insights of the diffusion process. To utilize the partial timestamps, the information source detection problem is formulated as a ranking problem on graphs and two ranking algorithms, cost-based ranking (CR) and tree-based ranking (TR), are proposed. Extensive experimental evaluations of synthetic data of different diffusion models and real world data demonstrate the effectiveness and robustness of CR and TR compared with existing algorithms.
ContributorsZhu, Kai (Author) / Ying, Lei (Thesis advisor) / Lai, Ying-Cheng (Committee member) / Liu, Huan (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2015
154364-Thumbnail Image.png
Description
The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of

The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as compared to many of the best very recent quality metrics. The proposed metrics are able to predict with high accuracy the relative amount of perceived noise in images of different content.

In the context of blur detection, existing approaches are either computationally costly or cannot perform reliably when dealing with the spatially-varying nature of the defocus blur. In addition, many existing approaches do not take human perception into account. This work proposes a blur detection algorithm that is capable of detecting and quantifying the level of spatially-varying blur by integrating directional edge spread calculation, probability of blur detection and local probability summation. The proposed method generates a blur map indicating the relative amount of perceived local blurriness. In order to detect the flat
ear flat regions that do not contribute to perceivable blur, a perceptual model based on the Just Noticeable Difference (JND) is further integrated in the proposed blur detection algorithm to generate perceptually significant blur maps. We compare our proposed method with six other state-of-the-art blur detection methods. Experimental results show that the proposed method performs the best both visually and quantitatively.

This work further investigates the application of the proposed blur detection methods to image deblurring. Two selective perceptual-based image deblurring frameworks are proposed, to improve the image deblurring results and to reduce the restoration artifacts. In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to achieve better reconstructed results for the edge regions.
ContributorsZhu, Tong (Author) / Karam, Lina (Thesis advisor) / Li, Baoxin (Committee member) / Bliss, Daniel (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2016
155098-Thumbnail Image.png
Description
The combination of rapid urban growth and climate change places stringent constraints on multisector sustainability of cities. Green infrastructure provides a great potential for mitigating anthropogenic-induced urban environmental problems; nevertheless, studies at city and regional scales are inhibited by the deficiency in modelling the complex transport coupled water and energy

The combination of rapid urban growth and climate change places stringent constraints on multisector sustainability of cities. Green infrastructure provides a great potential for mitigating anthropogenic-induced urban environmental problems; nevertheless, studies at city and regional scales are inhibited by the deficiency in modelling the complex transport coupled water and energy inside urban canopies. This dissertation is devoted to incorporating hydrological processes and urban green infrastructure into an integrated atmosphere-urban modelling system, with the goal to improve the reliability and predictability of existing numerical tools. Based on the enhanced numerical tool, the effects of urban green infrastructure on environmental sustainability of cities are examined.

Findings indicate that the deployment of green roofs will cool the urban environment in daytime and warm it at night, via evapotranspiration and soil insulation. At the annual scale, green roofs are effective in decreasing building energy demands for both summer cooling and winter heating. For cities in arid and semiarid environments, an optimal trade-off between water and energy resources can be achieved via innovative design of smart urban irrigation schemes, enabled by meticulous analysis of the water-energy nexus. Using water-saving plants alleviates water shortage induced by population growth, but comes at the price of an exacerbated urban thermal environment. Realizing the potential water buffering capacity of urban green infrastructure is crucial for the long-term water sustainability and subsequently multisector sustainability of cities. Environmental performance of urban green infrastructure is determined by land-atmosphere interactions, geographic and meteorological conditions, and hence it is recommended that analysis should be conducted on a city-by-city basis before actual implementation of green infrastructure.
ContributorsYang, Jiachuan (Author) / Wang, Zhihua (Thesis advisor) / Kaloush, Kamil (Committee member) / Myint, Soe (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2016
155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016
152681-Thumbnail Image.png
Description
Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up"

Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up" zones. This dissertation examines the biogeomorphological effects of damming ephemeral streams caused by the CAP canal by investigating: (1) changes in the preexisting spatial cover of riparian vegetation and how these changes are affected by stream geometry; (2) green-up initiation and evolution; and (3) changes in plant species and community level changes. To the author's knowledge, this is the only study that undertakes an interdisciplinary approach to understanding the environmental responses to anthropogenically-altered ephemeral stream channels. The results presented herein show that vegetation along the upstream section increased by an average of 200,872 m2 per kilometer of the CAP canal over a 28 year period. Vegetation growth was compared to channel widths which share a quasi-linear relationship. Remote sensing analysis of Landsat TM images using an object-oriented approach shows that riparian vegetation cover gradually increased over 28 years. Field studies reveal that the increases in vegetation are attributed to the artificial rise in local base-level upstream created by the canal, which causes water to spill laterally onto the desert floor. Vegetation within the green-up zone varies considerably in comparison to pre-canal construction. Changes are most notable in vegetation community shifts and abundance. The wettest section of the green-up zone contains the greatest density of woody plant stems, the greatest vegetation volume, and a high percentage of herbaceous cover. Vegetation within wetter zones changed from a tree-shrub to a predominantly tree-herb assemblage, whereas desert shrubs located in zones with intermediate moisture have developed larger stems. Results from this study lend valuable insight to green-up processes associated with damming ephemeral streams, which can be applied to planning future canal or dam projects in drylands. Also, understanding the development of the green-up zones provide awareness to potentially avoiding flood damage to infrastructure that may be unknowingly constructed within the slow-growing green-up zone.
ContributorsHamdan, Abeer (Author) / Schmeeckle, Mark (Thesis advisor) / Myint, Soe (Thesis advisor) / Dorn, Ronald (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2014
155919-Thumbnail Image.png
Description
This dissertation treats a number of related problems in control and data analysis of complex networks.

First, in existing linear controllability frameworks, the ability to steer a network from any initiate state toward any desired state is measured by the minimum number of driver nodes. However, the associated optimal control energy

This dissertation treats a number of related problems in control and data analysis of complex networks.

First, in existing linear controllability frameworks, the ability to steer a network from any initiate state toward any desired state is measured by the minimum number of driver nodes. However, the associated optimal control energy can become unbearably large, preventing actual control from being realized. Here I develop a physical controllability framework and propose strategies to turn physically uncontrollable networks into physically controllable ones. I also discover that although full control can be guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control energy to achieve actual control, and my work provides a framework to address this issue.

Second, in spite of recent progresses in linear controllability, controlling nonlinear dynamical networks remains an outstanding problem. Here I develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another. I introduce the concept of attractor network and formulate a quantifiable framework: a network is more controllable if the attractor network is more strongly connected. I test the control framework using examples from various models and demonstrate the beneficial role of noise in facilitating control.

Third, I analyze large data sets from a diverse online social networking (OSN) systems and find that the growth dynamics of meme popularity exhibit characteristically different behaviors: linear, “S”-shape and exponential growths. Inspired by cell population growth model in microbial ecology, I construct a base growth model for meme popularity in OSNs. Then I incorporate human interest dynamics into the base model and propose a hybrid model which contains a small number of free parameters. The model successfully predicts the various distinct meme growth dynamics.

At last, I propose a nonlinear dynamics model to characterize the controlling of WNT signaling pathway in the differentiation of neural progenitor cells. The model is able to predict experiment results and shed light on the understanding of WNT regulation mechanisms.
ContributorsWang, Lezhi (Author) / Lai, Ying-Cheng (Thesis advisor) / Wang, Xiao (Thesis advisor) / Papandreoou-Suppappola, Antonia (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2017
156107-Thumbnail Image.png
Description
Online social media is popular due to its real-time nature, extensive connectivity and a large user base. This motivates users to employ social media for seeking information by reaching out to their large number of social connections. Information seeking can manifest in the form of requests for personal and time-critical

Online social media is popular due to its real-time nature, extensive connectivity and a large user base. This motivates users to employ social media for seeking information by reaching out to their large number of social connections. Information seeking can manifest in the form of requests for personal and time-critical information or gathering perspectives on important issues. Social media platforms are not designed for resource seeking and experience large volumes of messages, leading to requests not being fulfilled satisfactorily. Designing frameworks to facilitate efficient information seeking in social media will help users to obtain appropriate assistance for their needs

and help platforms to increase user satisfaction.

Several challenges exist in the way of facilitating information seeking in social media. First, the characteristics affecting the user’s response time for a question are not known, making it hard to identify prompt responders. Second, the social context in which the user has asked the question has to be determined to find personalized responders. Third, users employ rhetorical requests, which are statements having the

syntax of questions, and systems assisting information seeking might be hindered from focusing on genuine questions. Fouth, social media advocates of political campaigns employ nuanced strategies to prevent users from obtaining balanced perspectives on

issues of public importance.

Sociological and linguistic studies on user behavior while making or responding to information seeking requests provides concepts drawing from which we can address these challenges. We propose methods to estimate the response time of the user for a given question to identify prompt responders. We compute the question specific social context an asker shares with his social connections to identify personalized responders. We draw from theories of political mobilization to model the behaviors arising from the strategies of people trying to skew perspectives. We identify rhetorical questions by modeling user motivations to post them.
ContributorsRanganath, Suhas (Author) / Liu, Huan (Thesis advisor) / Lai, Ying-Cheng (Thesis advisor) / Tong, Hanghang (Committee member) / Vaculin, Roman (Committee member) / Arizona State University (Publisher)
Created2017
156457-Thumbnail Image.png
Description
Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse

Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: Are the ways people think about resilience producing resilient infrastructure systems?



This dissertation argues that established thinking harbors misconceptions about infrastructure systems that diminish attempts to improve their resilience. Widespread efforts based on the current canon focus on improving data analytics, establishing resilience goals, reducing failure probabilities, and measuring cascading losses. Unfortunately, none of these pursuits change the resilience of an infrastructure system, because none of them result in knowledge about how data is used, goals are set, or failures occur. Through the examination of each misconception, this dissertation results in practical, new approaches for infrastructure systems to respond to unforeseen failures via sensing, adapting, and anticipating processes. Specifically, infrastructure resilience is improved by sensing when data analytics include the modeler-in-the-loop, adapting to stress contexts by switching between multiple resilience strategies, and anticipating crisis coordination activities prior to experiencing a failure.

Overall, results demonstrate that current resilience thinking needs to change because it does not differentiate resilience from risk. The majority of research thinks resilience is a property that a system has, like a noun, when resilience is really an action a system does, like a verb. Treating resilience as a noun only strengthens commitment to risk-based practices that do not protect infrastructure from unknown events. Instead, switching to thinking about resilience as a verb overcomes prevalent misconceptions about data, goals, systems, and failures, and may bring a necessary, radical change to the way infrastructure is protected in the future.
ContributorsEisenberg, Daniel Alexander (Author) / Seager, Thomas P. (Thesis advisor) / Park, Jeryang (Thesis advisor) / Alderson, David L. (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2018