Matching Items (119)
156783-Thumbnail Image.png
Description
In recent years, deep learning systems have outperformed traditional machine learning systems in most domains. There has been a lot of research recently in the field of hand gesture recognition using wearable sensors due to the numerous advantages these systems have over vision-based ones. However, due to the lack of

In recent years, deep learning systems have outperformed traditional machine learning systems in most domains. There has been a lot of research recently in the field of hand gesture recognition using wearable sensors due to the numerous advantages these systems have over vision-based ones. However, due to the lack of extensive datasets and the nature of the Inertial Measurement Unit (IMU) data, there are difficulties in applying deep learning techniques to them. Although many machine learning models have good accuracy, most of them assume that training data is available for every user while other works that do not require user data have lower accuracies. MirrorGen is a technique which uses wearable sensor data and generates synthetic videos using hand movements and it mitigates the traditional challenges of vision based recognition such as occlusion, lighting restrictions, lack of viewpoint variations, and environmental noise. In addition, MirrorGen allows for user-independent recognition involving minimal human effort during data collection. It also helps leverage the advances in vision-based recognition by using various techniques like optical flow extraction, 3D convolution. Projecting the orientation (IMU) information to a video helps in gaining position information of the hands. To validate these claims, we perform entropy analysis on various configurations such as raw data, stick model, hand model and real video. Human hand model is found to have an optimal entropy that helps in achieving user independent recognition. It also serves as a pervasive option as opposed to a video-based recognition. The average user independent recognition accuracy of 99.03% was achieved for a sign language dataset with 59 different users, 20 different signs with 20 repetitions each for a total of 23k training instances. Moreover, synthetic videos can be used to augment real videos to improve recognition accuracy.
ContributorsRamesh, Arun Srivatsa (Author) / Gupta, Sandeep K S (Thesis advisor) / Banerjee, Ayan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
156869-Thumbnail Image.png
Description
Multimodal Representation Learning is a multi-disciplinary research field which aims to integrate information from multiple communicative modalities in a meaningful manner to help solve some downstream task. These modalities can be visual, acoustic, linguistic, haptic etc. The interpretation of ’meaningful integration of information from different modalities’ remains modality and task

Multimodal Representation Learning is a multi-disciplinary research field which aims to integrate information from multiple communicative modalities in a meaningful manner to help solve some downstream task. These modalities can be visual, acoustic, linguistic, haptic etc. The interpretation of ’meaningful integration of information from different modalities’ remains modality and task dependent. The downstream task can range from understanding one modality in the presence of information from other modalities, to that of translating input from one modality to another. In this thesis the utility of multimodal representation learning for understanding one modality vis-à-vis Image Understanding for Visual Reasoning given corresponding information in other modalities, as well as translating from one modality to the other, specifically, Text to Image Translation was investigated.

Visual Reasoning has been an active area of research in computer vision. It encompasses advanced image processing and artificial intelligence techniques to locate, characterize and recognize objects, regions and their attributes in the image in order to comprehend the image itself. One way of building a visual reasoning system is to ask the system to answer questions about the image that requires attribute identification, counting, comparison, multi-step attention, and reasoning. An intelligent system is thought to have a proper grasp of the image if it can answer said questions correctly and provide a valid reasoning for the given answers. In this work how a system can be built by learning a multimodal representation between the stated image and the questions was investigated. Also, how background knowledge, specifically scene-graph information, if available, can be incorporated into existing image understanding models was demonstrated.

Multimodal learning provides an intuitive way of learning a joint representation between different modalities. Such a joint representation can be used to translate from one modality to the other. It also gives way to learning a shared representation between these varied modalities and allows to provide meaning to what this shared representation should capture. In this work, using the surrogate task of text to image translation, neural network based architectures to learn a shared representation between these two modalities was investigated. Also, the ability that such a shared representation is capable of capturing parts of different modalities that are equivalent in some sense is proposed. Specifically, given an image and a semantic description of certain objects present in the image, a shared representation between the text and the image modality capable of capturing parts of the image being mentioned in the text was demonstrated. Such a capability was showcased on a publicly available dataset.
ContributorsSaha, Rudra (Author) / Yang, Yezhou (Thesis advisor) / Singh, Maneesh Kumar (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2018
156833-Thumbnail Image.png
Description
Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to

Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a physical scene in all directions. GLEAM optionally operate across multiple mobile mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved estimation. The system implements policies that prioritize resolution, coverage, or update interval of the illumination estimation depending on the situational needs of the virtual scene and physical environment.

To evaluate the runtime performance and perceptual efficacy of the system, GLEAM was implemented on the Unity 3D Game Engine. The implementation was deployed on Android and iOS devices. On these implementations, GLEAM can prioritize dynamic estimation with update intervals as low as 15 ms or prioritize high spatial quality with update intervals of 200 ms. User studies across 99 participants and 26 scene comparisons reported a preference towards GLEAM over other lighting techniques in 66.67% of the presented augmented scenes and indifference in 12.57% of the scenes. A controlled lighting user study on 18 participants revealed a general preference for policies that strike a balance between resolution and update rate.
ContributorsPrakash, Siddhant (Author) / LiKamWa, Robert (Thesis advisor) / Yang, Yezhou (Thesis advisor) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2018
156898-Thumbnail Image.png
Description
Virtual digital assistants are automated software systems which assist humans by understanding natural languages such as English, either in voice or textual form. In recent times, a lot of digital applications have shifted towards providing a user experience using natural language interface. The change is brought up by the degree

Virtual digital assistants are automated software systems which assist humans by understanding natural languages such as English, either in voice or textual form. In recent times, a lot of digital applications have shifted towards providing a user experience using natural language interface. The change is brought up by the degree of ease with which the virtual digital assistants such as Google Assistant and Amazon Alexa can be integrated into your application. These assistants make use of a Natural Language Understanding (NLU) system which acts as an interface to translate unstructured natural language data into a structured form. Such an NLU system uses an intent finding algorithm which gives a high-level idea or meaning of a user query, termed as intent classification. The intent classification step identifies the action(s) that a user wants the assistant to perform. The intent classification step is followed by an entity recognition step in which the entities in the utterance are identified on which the intended action is performed. This step can be viewed as a sequence labeling task which maps an input word sequence into a corresponding sequence of slot labels. This step is also termed as slot filling.

In this thesis, we improve the intent classification and slot filling in the virtual voice agents by automatic data augmentation. Spoken Language Understanding systems face the issue of data sparsity. The reason behind this is that it is hard for a human-created training sample to represent all the patterns in the language. Due to the lack of relevant data, deep learning methods are unable to generalize the Spoken Language Understanding model. This thesis expounds a way to overcome the issue of data sparsity in deep learning approaches on Spoken Language Understanding tasks. Here we have described the limitations in the current intent classifiers and how the proposed algorithm uses existing knowledge bases to overcome those limitations. The method helps in creating a more robust intent classifier and slot filling system.
ContributorsGarg, Prashant (Author) / Baral, Chitta (Thesis advisor) / Kumar, Hemanth (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
157226-Thumbnail Image.png
Description
Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of

Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of immediate interaction between the pathologist and the surgeon, and time consuming.

Handheld, portable confocal laser endomicroscopy (CLE) is being explored in neurosurgery for its ability to image histopathological features of tissue at cellular resolution in real time during brain tumor surgery. Over the course of examination of the surgical tumor resection, hundreds to thousands of images may be collected. The high number of images requires significant time and storage load for subsequent reviewing, which motivated several research groups to employ deep convolutional neural networks (DCNNs) to improve its utility during surgery. DCNNs have proven to be useful in natural and medical image analysis tasks such as classification, object detection, and image segmentation.

This thesis proposes using DCNNs for analyzing CLE images of brain tumors. Particularly, it explores the practicality of DCNNs in three main tasks. First, off-the shelf DCNNs were used to classify images into diagnostic and non-diagnostic. Further experiments showed that both ensemble modeling and transfer learning improved the classifier’s accuracy in evaluating the diagnostic quality of new images at test stage. Second, a weakly-supervised learning pipeline was developed for localizing key features of diagnostic CLE images from gliomas. Third, image style transfer was used to improve the diagnostic quality of CLE images from glioma tumors by transforming the histology patterns in CLE images of fluorescein sodium-stained tissue into the ones in conventional hematoxylin and eosin-stained tissue slides.

These studies suggest that DCNNs are opted for analysis of CLE images. They may assist surgeons in sorting out the non-diagnostic images, highlighting the key regions and enhancing their appearance through pattern transformation in real time. With recent advances in deep learning such as generative adversarial networks and semi-supervised learning, new research directions need to be followed to discover more promises of DCNNs in CLE image analysis.
ContributorsIzady Yazdanabadi, Mohammadhassan (Author) / Preul, Mark (Thesis advisor) / Yang, Yezhou (Thesis advisor) / Nakaji, Peter (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2019
156951-Thumbnail Image.png
Description
Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single

Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single modal data and difficulty in analyzing high dimensional data. Towards facilitating the processing and understanding of online data, this dissertation primarily focuses on three challenges that I feel are of great practical importance: handling scale differences in computer vision tasks, such as facial component detection and face retrieval, developing efficient classifiers using partially labeled data and noisy data, and employing multi-modal models and feature selection to improve multi-view data analysis. For the first challenge, I propose a scale-insensitive algorithm to expedite and accurately detect facial landmarks. For the second challenge, I propose two algorithms that can be used to learn from partially labeled data and noisy data respectively. For the third challenge, I propose a new framework that incorporates feature selection modules into LDA models.
ContributorsZhou, Xu (Author) / Li, Baoxin (Thesis advisor) / Hsiao, Sharon (Committee member) / Davulcu, Hasan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
133397-Thumbnail Image.png
Description
Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning

Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning coding skills which is unnatural to engineering students with no previous exposure and examining if visual learning enhances introductory computer science education. Visual and text-based learning are evaluated to determine how students learn introductory coding skills and associated problem solving skills. My study was conducted to observe how the two types of learning aid the students in learning how to problem solve as well as how much knowledge can be obtained in a short period of time. The application used for visual learning was Scratch and Repl.it was used for text-based learning. Two exams were made to measure the progress made by each student. The topics covered by the exam were initialization, variable reassignment, output, if statements, if else statements, nested if statements, logical operators, arrays/lists, while loop, type casting, functions, object orientation, and sorting. Analysis of the data collected in the study allow us to observe whether the traditional method of teaching programming or block-based programming is more beneficial and in what topics of introductory computer science concepts.
ContributorsVidaure, Destiny Vanessa (Author) / Meuth, Ryan (Thesis director) / Yang, Yezhou (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133636-Thumbnail Image.png
Description
All of the modern technology tools that are being used today, have a purpose to support a variety of human tasks. Ambient Intelligence is the next step to transform modern technology. Ambient Intelligence is an electronic environment that is sensitive and responsive to human interaction/activity. We understand that Ambient Intelligence(AmI)

All of the modern technology tools that are being used today, have a purpose to support a variety of human tasks. Ambient Intelligence is the next step to transform modern technology. Ambient Intelligence is an electronic environment that is sensitive and responsive to human interaction/activity. We understand that Ambient Intelligence(AmI) concentrates on connectivity within a person's environment and the purpose of having a new connection is to make life simpler. Today, technology is in the transition of a new lifestyle where technology is discretely living with us. Ambient Intelligence is still in progress, but we can analyze the technology we have today, ties a relationship with Ambient Intelligence. In order to examine this concern, I investigated how much awareness/knowledge users that range from Generation X to Xennials, that had experience from replacing habitual items and technologies they use on a daily basis. A few questions I mainly wanted answered: - What kind of technologies, software, or tech services replace items you use daily? - What kind of benefits did the technology give you, did it change the way you think/act on any kind of activities? - What kind of expectations/concerns do you have for future technologies? To accomplish this, I gathered information from interviewing multiples groups: millennials and other older generations (33+ years old). I retrieved data from students at Arizona State University, Intel Corporation, and a local clinic. From this study, I've discovered from both groups, that both sides agree that modern technology is rapidly growing to a point that computers think as humans. Through multiple interviews and research, I have found that the technology today makes an impact through all aspects of our lives and through artificial intelligence. Furthermore, I will discuss and predict what will society will encounter later on as the new technology discretely arises.
ContributorsPascua, Roman Paolo Bustos (Author) / Yang, Yezhou (Thesis director) / Caviedes, Jorge (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
In the field of machine learning, reinforcement learning stands out for its ability to explore approaches to complex, high dimensional problems that outperform even expert humans. For robotic locomotion tasks reinforcement learning provides an approach to solving them without the need for unique controllers. In this thesis, two reinforcement learning

In the field of machine learning, reinforcement learning stands out for its ability to explore approaches to complex, high dimensional problems that outperform even expert humans. For robotic locomotion tasks reinforcement learning provides an approach to solving them without the need for unique controllers. In this thesis, two reinforcement learning algorithms, Deep Deterministic Policy Gradient and Group Factor Policy Search are compared based upon their performance in the bipedal walking environment provided by OpenAI gym. These algorithms are evaluated on their performance in the environment and their sample efficiency.
ContributorsMcDonald, Dax (Author) / Ben Amor, Heni (Thesis director) / Yang, Yezhou (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2018-12
155378-Thumbnail Image.png
Description
To ensure system integrity, robots need to proactively avoid any unwanted physical perturbation that may cause damage to the underlying hardware. In this thesis work, we investigate a machine learning approach that allows robots to anticipate impending physical perturbations from perceptual cues. In contrast to other approaches that require knowledge

To ensure system integrity, robots need to proactively avoid any unwanted physical perturbation that may cause damage to the underlying hardware. In this thesis work, we investigate a machine learning approach that allows robots to anticipate impending physical perturbations from perceptual cues. In contrast to other approaches that require knowledge about sources of perturbation to be encoded before deployment, our method is based on experiential learning. Robots learn to associate visual cues with subsequent physical perturbations and contacts. In turn, these extracted visual cues are then used to predict potential future perturbations acting on the robot. To this end, we introduce a novel deep network architecture which combines multiple sub- networks for dealing with robot dynamics and perceptual input from the environment. We present a self-supervised approach for training the system that does not require any labeling of training data. Extensive experiments in a human-robot interaction task show that a robot can learn to predict physical contact by a human interaction partner without any prior information or labeling. Furthermore, the network is able to successfully predict physical contact from either depth stream input or traditional video input or using both modalities as input.
ContributorsSur, Indranil (Author) / Amor, Heni B (Thesis advisor) / Fainekos, Georgios (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2017