Matching Items (138)
131478-Thumbnail Image.png
Description
The process of cooking a turkey is a yearly task that families undertake in order to deliver a delicious centerpiece to a Thanksgiving meal. While other dishes accompany and comprise the traditional Thanksgiving supper, focusing on creating a turkey that satisfies the tastes of all guests is difficult, as preferences

The process of cooking a turkey is a yearly task that families undertake in order to deliver a delicious centerpiece to a Thanksgiving meal. While other dishes accompany and comprise the traditional Thanksgiving supper, focusing on creating a turkey that satisfies the tastes of all guests is difficult, as preferences vary. Over the years, many cooking methods and preparation variations have come to light. This thesis studies these cooking methods and preparation variations, as well as the effects on the crispiness of the skin, the juiciness of the meat, the tenderness of the meat, and the overall taste, to simplify the choices that home cooks have to prepare a turkey that best fits their tastes. Testing and evaluation reveal that among deep-frying, grilling, and oven roasting turkey, a number of preparation variations show statistically significant changes relative to a lack of these preparation variations. For crispiness, fried turkeys are statistically superior, scoring about 1.5 points higher than other cooking methods on a 5 point scale. For juiciness, the best preparation variation was using an oven bag, with the oven roasted turkey scoring about 4.5 points on a 5 point scale. For tenderness, multiple methods are excellent, with the best three preparation variations in order being spatchcocking, brining, and using an oven bag, each of these preparation variations are just under a 4 out of 5. Finally, testing reaffirms that judges tend to have different subjective tastes, with some having different perceptions and opinions on some criteria, while statistically agreeing on others: there was 67% agreement among judges on crispiness and tenderness, while there was only 17% agreement on juiciness. Evaluation of these cooking methods, as well as their respective preparation variations, addresses the question of which methods are worthwhile endeavors for cooks.
ContributorsVance, Jarod (Co-author) / Lacsa, Jeremy (Co-author) / Green, Matthew (Thesis director) / Taylor, David (Committee member) / Chemical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132278-Thumbnail Image.png
Description
Hydrocephalus is a chronic neurological condition affecting an estimated 1 in every 500 infants born. The most common treatment method involves surgical implantation of a shunt system; however these systems have a high failure rate resulting in repeat invasive surgeries. A promising approach being researched to treat hydrocephalus is a

Hydrocephalus is a chronic neurological condition affecting an estimated 1 in every 500 infants born. The most common treatment method involves surgical implantation of a shunt system; however these systems have a high failure rate resulting in repeat invasive surgeries. A promising approach being researched to treat hydrocephalus is a miniaturized valve composed of silicon and a hydrogel material. The current chemical cross-linker used in the hydrogel, EGDMA, however is susceptible to hydrolytic cleavage due to the ester groups.

This thesis proposed a novel hydrogel composed of a HEMA backbone and methacrylated Jeffamines as the chemical cross-linker as a possible replacement for the HEMA and EGDMA hydrogel used currently in the hydrocephalus valve. Jeffamine EDR-148 was methacrylated through reaction with methacryloyl chloride and characterized using 1H NMR spectroscopy. Subsequently, hydrogels were synthesized, using both EGDMA and EDR-MA, and the properties were compared through swelling and rotational rheology. Finally, degradation tests were performed to compare the hydrolytic stability of the two cross-linkers.

Results of this work demonstrated that Jeffamine EDR-148 was able to be successfully methacrylated and used to synthesize a hydrogel. The new hydrogel was shown to have comparable mechanical behavior and robustness to the EGDMA hydrogel, with slightly increased swelling capabilities. Degradation tests did not confirm the theory that the EDR-MA gels would exhibit greater hydrolytic stability however. Future work includes perfecting the purification of the EDR-MA, conducting a longer-term degradation study at physiologically relevant conditions, and demonstrating the tunability of the Jeffamine hydrogels.
ContributorsTrimble, Kari Leigh (Author) / Green, Matthew (Thesis director) / Chae, Junseok (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131639-Thumbnail Image.png
Description
Aluminum alloys are commonly used for engineering applications due to their high strength to weight ratio, low weight, and low cost. Pitting corrosion, accelerated by saltwater environments, leads to fatigue cracks and stress corrosion cracking during service. Two-dimensional (2D) characterization methods are typically used to identify and characterize corrosion; however,

Aluminum alloys are commonly used for engineering applications due to their high strength to weight ratio, low weight, and low cost. Pitting corrosion, accelerated by saltwater environments, leads to fatigue cracks and stress corrosion cracking during service. Two-dimensional (2D) characterization methods are typically used to identify and characterize corrosion; however, these methods are destructive and do not enable an efficient means of quantifying mechanisms of pit initiation and growth. In this study, lab-scale x-ray microtomography was used to non-destructively observe, quantify, and understand pit growth in three dimensions over a 20-day corrosion period in the AA7075-T651 alloy. The XRT process, capable of imaging sample volumes with a resolution near one micrometer, was found to be an ideal tool for large-volume pit examination. Pit depths were quantified over time using renderings of sample volumes, leading to an understanding of how inclusion particles, oxide breakdown, and corrosion mechanisms impact the growth and morphology of pits. This process, when carried out on samples produced with two different rolling directions and rolling extents, yielded novel insights into the long-term macroscopic corrosion behaviors impacted by alloy production and design. Key among these were the determinations that the alloy’s rolling direction produces a significant difference in the average growth rate of pits and that the corrosion product layer loses its passivating effect as a result of cyclic immersion. In addition, a new mechanism of pitting corrosion is proposed which is focused on the pseudo-random spatial distribution of iron-rich inclusion particles in the alloy matrix, which produces a random distribution of pit depths based on the occurrence of co-operative corrosion near inclusion clusters.
ContributorsSinclair, Daniel Ritchie (Author) / Chawla, Nikhilesh (Thesis director) / Jiao, Yang (Committee member) / Bale, Hrishikesh (Committee member) / School of International Letters and Cultures (Contributor) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133064-Thumbnail Image.png
Description
Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the

Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the feedwater is pretreated to take any excess pollutants out before the desalination. These pretreatment membranes are susceptible to fouling, which reduces efficiency and drives up costs of the overall process. Increasing the hydrophilicity of these membranes would reduce fouling, and electrospinning is a production method of pretreatment membranes with the capability to control hydrophilicity. This work explores how the composition of electrospun fibrous membranes containing blends of hydrophilic and hydrophobic polymers affects membrane characteristics such as wettability as well as filtration performance. Nonwoven, nanoscale membranes were prepared using electrospinning with a targeted application of pretreatment in water filtration. Using a rotating collector, electrospun mats of hydrophobic poly(vinyl chloride) (PVC) and hydrophilic poly(vinyl alcohol) (PVA) were simultaneously deposited from separate polymer solutions, and their polymer compositions were then characterized using Fourier Transform Infrared (FTIR) spectra. The data did not reveal a reliable correlation established between experimental control variables like flow rate and membrane composition. However, when the membranes' hydrophilicity was analyzed using static water contact angle measurements, a trend between PVA content and hydrophilicity was seen. This shows that the hypothesis of increasing PVA content to increase hydrophilicity is reliable, but with the current experimental design the PVA content is not controllable. Therefore, the primary future work is making a new experimental setup that will be able to better control membrane composition. Filtration studies to test for fouling and size exclusion will be performed once this control is obtained.
ContributorsTronstad, Zachary (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Epps, Thomas (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133676-Thumbnail Image.png
Description
Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form,

Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form, which open new possibilities for potential applications. Furthermore, protein-mediated synthesis favors conditions that are more environmentally and biologically friendly than traditional synthesis methods. Thus far, gold particles have been synthesized through mediation with jack bean urease (JBU) and para mercaptobenzoic acid (p-MBA). Nanoparticles synthesized with JBU were 80-90nm diameter in size, while those mediated by p-MBA were revealed by TEM to have a size between 1-3 nm, which was consistent with the expectation based on the black-red color of solution. Future trials will feature replacement of p-MBA by amino acids of similar structure, followed by peptides containing similarly structured amino acids.
ContributorsHathorn, Gregory Michael (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133821-Thumbnail Image.png
Description
Membrane proteins (MPs) are an important aspect of cell survival that ensure structural integrity, signaling, and transportation of molecules. Since 2015, over 450 MPs have been studied to find their functionalities and structure. Sufficient amounts of correctly folded MPs are needed to accurately study them through crystallography and other structural

Membrane proteins (MPs) are an important aspect of cell survival that ensure structural integrity, signaling, and transportation of molecules. Since 2015, over 450 MPs have been studied to find their functionalities and structure. Sufficient amounts of correctly folded MPs are needed to accurately study them through crystallography and other structural study methods. Use of recombinant technology is needed to overexpress MPs as natural abundance of MP is often too slow to provide the necessary amounts. However, an increase in toxicity and decrease in generation time deter the overexpression of MPs. The following report discusses two methods of enhancing overexpression in Escherchia coli, the use of T7 RNA polymerase (T7RNAP) and the reprogramming of chaperon pathways, that combats toxicity and promotes cell growth. Overall, both methods are proven to work effectively to overexpress MPs by regulating transcription rate of mRNA (T7RNAP) or folding and transporting of polypeptides to inner membrane (chaperon pathway). To further study the effectiveness of the two methods, they will need to be compared at the same conditions. In addition, a combination of two methods should also be studied to find out if the combination would have a great impact on the overexpression of the MPs.
ContributorsHan, Sue Jisue (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133303-Thumbnail Image.png
Description
Heterogeneous tissues are composed of chemical and physical gradients responsible for transferring load from one tissue type to another, through the thickness or the length of the tissue. Musculoskeletal tissues include these junctions, such as the tendon-bone and ligament-bone, which consist of an alignment gradient through the length of the

Heterogeneous tissues are composed of chemical and physical gradients responsible for transferring load from one tissue type to another, through the thickness or the length of the tissue. Musculoskeletal tissues include these junctions, such as the tendon-bone and ligament-bone, which consist of an alignment gradient through the length of the interfacial regions. These junctions are imperative for transferring mechanical loadings between dissimilar tissues. Engineering a proper scaffold that mimics the native architecture of these tissues to prompt proper repair after an interfacial injury has been difficult to fabricate within tissue engineering. Electrospinning is a common technique for fabricating nanofibrous scaffolds that can mimic the structure of the native extracellular matrix (ECM). However, current electrospinning techniques do not easily allow for the replication of the chemical and physical gradients present in musculoskeletal interfacial tissues. In this work, a novel magnetic electrospinning technique was developed to fabricate polycaprolactone (PCL) nanofibrous scaffolds that recapitulate the gradient alignment structure of the tendon-bone junction. When exposed to the natural magnetic field from a permanent magnet, PCL fibers innately aligned near the magnet with unalignment at distances further away from the magnetic field.
ContributorsGualtieri, Alessandra Villa (Author) / Holloway, Julianne (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Heterogeneous musculoskeletal tissues, such as the tendon-bone junction, is crucial for transferring mechanical loading during human physical activity. This region, also known as the enthesis, is composed of a complex extracellular matrix with gradient fiber orientations and chemistries. These different physical and chemical properties are crucial in providing the support

Heterogeneous musculoskeletal tissues, such as the tendon-bone junction, is crucial for transferring mechanical loading during human physical activity. This region, also known as the enthesis, is composed of a complex extracellular matrix with gradient fiber orientations and chemistries. These different physical and chemical properties are crucial in providing the support that these junctions need in handling mechanical loading of everyday activities. Currently, surgical restorative procedures for a torn enthesis entail a very invasive technique of suturing the torn tendon onto the bone. This results in improper reinjury. To circumvent this issue, one common strategy within tissue engineering is to introduce a biomaterial scaffold which acts as a template for the local damaged tissue. Electrospinning can be utilized to fabricate a fibrous material to recapitulate the structure of the extracellular matrix. Currently electrospinning techniques only allow the creation of scaffold that consists of only one orientation and material. In this work, we investigated a multicomponent, magnetically assisted, electrospinning technique to fabricate a fiber alignment and chemical gradient scaffold for tendon-bone repair
ContributorsLe, Minh (Author) / Holloway, Julianne (Thesis director) / Green, Matthew (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134755-Thumbnail Image.png
Description
The objective of this research is to create biodegradable mats with tunable characteristics such as fiber diameter and surface area. The drug delivery mats enable spatially controlled delivery of disease-specific therapeutics. Using a large electric potential to draw fibers from a solution flowing at a specific rate, the polymer

The objective of this research is to create biodegradable mats with tunable characteristics such as fiber diameter and surface area. The drug delivery mats enable spatially controlled delivery of disease-specific therapeutics. Using a large electric potential to draw fibers from a solution flowing at a specific rate, the polymer fibers reach a grounded target several inches away. The biodegradable polymer used in this study was poly(lactic acid-co-glycolic acid) (PLGA). PLGA solutions ranging from 0.5 to 27 wt.% were prepared by dissolving the block copolymer in a solvent mixture containing tetrahydrofuran (THF) and dimethylformamide (DMF) at a 3:1 weight ratio. They were then electrospun at needle-to-target distances of 7, 14, and 18 cm and rates ranging from 0.8 to 4 mL/h. The range of voltage used was between 8 – 15 kV, which was based on the observation of the formation of a Taylor cone, largely affected by on the environment and weather (e.g., temperature and humidity in the lab). A 27 wt.% PLGA solution, electrospun at 1 mL/h at a voltage of 11.25 kV and needle-to-target distance of 14 cm produced uniform fibers with an average fiber diameter of 0.985 m. All other parameters outside the range given created beaded fibers. In addition, solution rheology was performed on some of the PLGA solution to measure viscosity, which is directly correlated to the fiber diameter of the electrospun mats. Observing the impact of solvent on fiber spinning and fiber diameter brings about many positive results in developing fully characterized and well-understood fibrous mats for drug delivery. The nanoscale fibers will be used as drug delivery mats and, therefore, the biodegradation kinetics of the polymers will be studied. Next, parameters of the polymers as well as the polymeric mats will be correlated to the degradation-mediated release of small molecule therapeutics (e.g., peptides, drugs, etc.) such that time-resolved dosing profiles can be created.
ContributorsLent, Madeline (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05