Matching Items (65)
152032-Thumbnail Image.png
Description
In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.
ContributorsOlivera-Aguilar, Margarita (Author) / Millsap, Roger E. (Thesis advisor) / Levy, Roy (Committee member) / MacKinnon, David (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2013
151721-Thumbnail Image.png
Description
Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and

Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and error responses, reaction times, and accuracy. Accuracy and reaction times were analyzed in terms of memory load (task condition), number of repetitions, effect of high vs. low print-frequency, and correlations with working memory span. Multinomial tree analyses were also completed to investigate source vs. item memory and revealed a mirror effect in episodic memory experiments (source memory), but a frequency advantage in span tasks (item memory). Interestingly enough, we did not observe an advantage for high working memory span individuals in frequency judgments, even when participants split their attention during the dual task (similar to a complex span task). However, we concluded that both the amount of attentional resources allocated and prior experience with an item affect how it is stored in memory.
ContributorsPeterson, Megan Paige (Author) / Azuma, Tamiko (Thesis advisor) / Gray, Shelley (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2013
151992-Thumbnail Image.png
Description
Dimensionality assessment is an important component of evaluating item response data. Existing approaches to evaluating common assumptions of unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001), have been shown to work well under large-scale assessment conditions (e.g., large sample sizes and item pools;

Dimensionality assessment is an important component of evaluating item response data. Existing approaches to evaluating common assumptions of unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001), have been shown to work well under large-scale assessment conditions (e.g., large sample sizes and item pools; see e.g., Froelich & Habing, 2007). It remains to be seen how such procedures perform in the context of small-scale assessments characterized by relatively small sample sizes and/or short tests. The fact that some procedures come with minimum allowable values for characteristics of the data, such as the number of items, may even render them unusable for some small-scale assessments. Other measures designed to assess dimensionality do not come with such limitations and, as such, may perform better under conditions that do not lend themselves to evaluation via statistics that rely on asymptotic theory. The current work aimed to evaluate the performance of one such metric, the standardized generalized dimensionality discrepancy measure (SGDDM; Levy & Svetina, 2011; Levy, Xu, Yel, & Svetina, 2012), under both large- and small-scale testing conditions. A Monte Carlo study was conducted to compare the performance of DIMTEST and the SGDDM statistic in terms of evaluating assumptions of unidimensionality in item response data under a variety of conditions, with an emphasis on the examination of these procedures in small-scale assessments. Similar to previous research, increases in either test length or sample size resulted in increased power. The DIMTEST procedure appeared to be a conservative test of the null hypothesis of unidimensionality. The SGDDM statistic exhibited rejection rates near the nominal rate of .05 under unidimensional conditions, though the reliability of these results may have been less than optimal due to high sampling variability resulting from a relatively limited number of replications. Power values were at or near 1.0 for many of the multidimensional conditions. It was only when the sample size was reduced to N = 100 that the two approaches diverged in performance. Results suggested that both procedures may be appropriate for sample sizes as low as N = 250 and tests as short as J = 12 (SGDDM) or J = 19 (DIMTEST). When used as a diagnostic tool, SGDDM may be appropriate with as few as N = 100 cases combined with J = 12 items. The study was somewhat limited in that it did not include any complex factorial designs, nor were the strength of item discrimination parameters or correlation between factors manipulated. It is recommended that further research be conducted with the inclusion of these factors, as well as an increase in the number of replications when using the SGDDM procedure.
ContributorsReichenberg, Ray E (Author) / Levy, Roy (Thesis advisor) / Thompson, Marilyn S. (Thesis advisor) / Green, Samuel B. (Committee member) / Arizona State University (Publisher)
Created2013
151505-Thumbnail Image.png
Description
Students with traumatic brain injury (TBI) sometimes experience impairments that can adversely affect educational performance. Consequently, school psychologists may be needed to help determine if a TBI diagnosis is warranted (i.e., in compliance with the Individuals with Disabilities Education Improvement Act, IDEIA) and to suggest accommodations to assist those students.

Students with traumatic brain injury (TBI) sometimes experience impairments that can adversely affect educational performance. Consequently, school psychologists may be needed to help determine if a TBI diagnosis is warranted (i.e., in compliance with the Individuals with Disabilities Education Improvement Act, IDEIA) and to suggest accommodations to assist those students. This analogue study investigated whether school psychologists provided with more comprehensive psychoeducational evaluations of a student with TBI succeeded in detecting TBI, in making TBI-related accommodations, and were more confident in their decisions. To test these hypotheses, 76 school psychologists were randomly assigned to one of three groups that received increasingly comprehensive levels of psychoeducational evaluation embedded in a cumulative folder of a hypothetical student whose history included a recent head injury and TBI-compatible school problems. As expected, school psychologists who received a more comprehensive psychoeducational evaluation were more likely to make a TBI educational diagnosis, but the effect size was not strong, and the predictive value came from the variance between the first and third groups. Likewise, school psychologists receiving more comprehensive evaluation data produced more accommodations related to student needs and felt more confidence in those accommodations, but significant differences were not found at all levels of evaluation. Contrary to expectations, however, providing more comprehensive information failed to engender more confidence in decisions about TBI educational diagnoses. Concluding that a TBI is present may itself facilitate accommodations; school psychologists who judged that the student warranted a TBI educational diagnosis produce more TBI-related accommodations. Impact of findings suggest the importance of training school psychologists in the interpretation of neuropsychology test results to aid in educational diagnosis and to increase confidence in their use.
ContributorsHildreth, Lisa Jane (Author) / Hildreth, Lisa J (Thesis advisor) / Wodrich, David (Committee member) / Levy, Roy (Committee member) / Lavoie, Michael (Committee member) / Arizona State University (Publisher)
Created2012
152477-Thumbnail Image.png
Description
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation

This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation educational context grounded in theories of cognition and learning. BN models were manipulated along two factors: latent variable dependency structure and number of latent classes. Distributions of posterior predicted p-values (PPP-values) served as the primary outcome measure and were summarized in graphical presentations, by median values across replications, and by proportions of replications in which the PPP-values were extreme. An effect size measure for PPMC was introduced as a supplemental numerical summary to the PPP-value. Consistent with previous PPMC research, all investigated fit functions tended to perform conservatively, but Standardized Generalized Dimensionality Discrepancy Measure (SGDDM), Yen's Q3, and Hierarchy Consistency Index (HCI) only mildly so. Adequate power to detect at least some types of misfit was demonstrated by SGDDM, Q3, HCI, Item Consistency Index (ICI), and to a lesser extent Deviance, while proportion correct (PC), a chi-square-type item-fit measure, Ranked Probability Score (RPS), and Good's Logarithmic Scale (GLS) were powerless across all investigated factors. Bivariate SGDDM and Q3 were found to provide powerful and detailed feedback for all investigated types of misfit.
ContributorsCrawford, Aaron (Author) / Levy, Roy (Thesis advisor) / Green, Samuel (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2014
152801-Thumbnail Image.png
Description
Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults

Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults participated in the study that measured intelligibility (percent words correct) of dysarthric speech in auditory versus audiovisual conditions. Participants were then separated into two groups: older adults (age range 47 to 68) and young adults (age range 19 to 36) to examine the influence of age. Findings revealed that all participants, regardless of age, improved their ability to recognize dysarthric speech when visual speech was added to the auditory signal. The magnitude of this benefit, however, was greater for older adults when compared with younger adults. These results inform our understanding of how visual speech information influences understanding of dysarthric speech.
ContributorsFall, Elizabeth (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Gray, Shelley (Committee member) / Arizona State University (Publisher)
Created2014
152928-Thumbnail Image.png
Description
The study examined how ATFIND, Mantel-Haenszel, SIBTEST, and Crossing SIBTEST function when items in the dataset are modelled to differentially advantage a lower ability focal group over a higher ability reference group. The primary purpose of the study was to examine ATFIND's usefulness as a valid subtest selection tool, but

The study examined how ATFIND, Mantel-Haenszel, SIBTEST, and Crossing SIBTEST function when items in the dataset are modelled to differentially advantage a lower ability focal group over a higher ability reference group. The primary purpose of the study was to examine ATFIND's usefulness as a valid subtest selection tool, but it also explored the influence of DIF items, item difficulty, and presence of multiple examinee populations with different ability distributions on both its selection of the assessment test (AT) and partitioning test (PT) lists and on all three differential item functioning (DIF) analysis procedures. The results of SIBTEST were also combined with those of Crossing SIBTEST, as might be done in practice.

ATFIND was found to be a less-than-effective matching subtest selection tool with DIF items that are modelled unidimensionally. If an item was modelled with uniform DIF or if it had a referent difficulty parameter in the Medium range, it was found to be selected slightly more often for the AT List than the PT List. These trends were seen to increase as sample size increased. All three DIF analyses, and the combined SIBTEST and Crossing SIBTEST, generally were found to perform less well as DIF contaminated the matching subtest, as well as when DIF was modelled less severely or when the focal group ability was skewed. While the combined SIBTEST and Crossing SIBTEST was found to have the highest power among the DIF analyses, it also was found to have Type I error rates that were sometimes extremely high.
ContributorsScott, Lietta Marie (Author) / Levy, Roy (Thesis advisor) / Green, Samuel B (Thesis advisor) / Gorin, Joanna S (Committee member) / Williams, Leila E (Committee member) / Arizona State University (Publisher)
Created2014
152985-Thumbnail Image.png
Description
Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When

Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When prior information about a relationship is available, the estimates obtained could differ drastically depending on the choice of Bayesian or frequentist method. Study 1 in this project compared the performance of five methods for obtaining interval estimates of the mediated effect in terms of coverage, Type I error rate, empirical power, interval imbalance, and interval width at N = 20, 40, 60, 100 and 500. In Study 1, Bayesian methods with informative prior distributions performed almost identically to Bayesian methods with diffuse prior distributions, and had more power than normal theory confidence limits, lower Type I error rates than the percentile bootstrap, and coverage, interval width, and imbalance comparable to normal theory, percentile bootstrap, and the bias-corrected bootstrap confidence limits. Study 2 evaluated if a Bayesian method with true parameter values as prior information outperforms the other methods. The findings indicate that with true values of parameters as the prior information, Bayesian credibility intervals with informative prior distributions have more power, less imbalance, and narrower intervals than Bayesian credibility intervals with diffuse prior distributions, normal theory, percentile bootstrap, and bias-corrected bootstrap confidence limits. Study 3 examined how much power increases when increasing the precision of the prior distribution by a factor of ten for either the action or the conceptual path in mediation analysis. Power generally increases with increases in precision but there are many sample size and parameter value combinations where precision increases by a factor of 10 do not lead to substantial increases in power.
ContributorsMiocevic, Milica (Author) / Mackinnon, David P. (Thesis advisor) / Levy, Roy (Committee member) / West, Stephen G. (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2014
153391-Thumbnail Image.png
Description
Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS)

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.
ContributorsMistler, Stephen (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona (Committee member) / Levy, Roy (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015
153352-Thumbnail Image.png
Description
Language and music are fundamentally entwined within human culture. The two domains share similar properties including rhythm, acoustic complexity, and hierarchical structure. Although language and music have commonalities, abilities in these two domains have been found to dissociate after brain damage, leaving unanswered questions about their interconnectedness, including can one

Language and music are fundamentally entwined within human culture. The two domains share similar properties including rhythm, acoustic complexity, and hierarchical structure. Although language and music have commonalities, abilities in these two domains have been found to dissociate after brain damage, leaving unanswered questions about their interconnectedness, including can one domain support the other when damage occurs? Evidence supporting this question exists for speech production. Musical pitch and rhythm are employed in Melodic Intonation Therapy to improve expressive language recovery, but little is known about the effects of music on the recovery of speech perception and receptive language. This research is one of the first to address the effects of music on speech perception. Two groups of participants, an older adult group (n=24; M = 71.63 yrs) and a younger adult group (n=50; M = 21.88 yrs) took part in the study. A native female speaker of Standard American English created four different types of stimuli including pseudoword sentences of normal speech, simultaneous music-speech, rhythmic speech, and music-primed speech. The stimuli were presented binaurally and participants were instructed to repeat what they heard following a 15 second time delay. Results were analyzed using standard parametric techniques. It was found that musical priming of speech, but not simultaneous synchronized music and speech, facilitated speech perception in both the younger adult and older adult groups. This effect may be driven by rhythmic information. The younger adults outperformed the older adults in all conditions. The speech perception task relied heavily on working memory, and there is a known working memory decline associated with aging. Thus, participants completed a working memory task to be used as a covariate in analyses of differences across stimulus types and age groups. Working memory ability was found to correlate with speech perception performance, but that the age-related performance differences are still significant once working memory differences are taken into account. These results provide new avenues for facilitating speech perception in stroke patients and sheds light upon the underlying mechanisms of Melodic Intonation Therapy for speech production.
ContributorsLaCroix, Arianna (Author) / Rogalsky, Corianne (Thesis advisor) / Gray, Shelley (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2015