Matching Items (267)
Filtering by

Clear all filters

152025-Thumbnail Image.png
Description
At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis

At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.
ContributorsPrakash, Nitin (Author) / Heydt, Gerald T. (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152233-Thumbnail Image.png
Description
Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.
ContributorsRay, Tathagata (Author) / Youngbull, Cody (Thesis advisor) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
Description
Several contemporary clarinet works use Chinese folk music elements from different regions in new compositions to entice listener's and performer's appreciation of Chinese culture. However, to date, limited academic research on this topic exists. This research paper introduces six contemporary clarinet works by six Chinese composers: Qigang Chen's Morning Song,

Several contemporary clarinet works use Chinese folk music elements from different regions in new compositions to entice listener's and performer's appreciation of Chinese culture. However, to date, limited academic research on this topic exists. This research paper introduces six contemporary clarinet works by six Chinese composers: Qigang Chen's Morning Song, Yan Wang's Mu ma zhi ge (The Song of Grazing Horses), An-lun Huang's Capriccio for Clarinet and Strings Op. 41, Bijing Hu's The Sound of Pamir Clarinet Concerto, Mei-Mi Lan's Concerto for Clarinet and String Orchestra with Harp and Percussion, and Yu-Hui Chang's Three Fantasias for Solo Clarinet in B-flat. They are examined from different perspectives, including general structure, style, and rejuvenated folk music use. The focus of this research paper is to investigate the use of Chinese folk music in several works in collaboration with the composers. The author found that although contemporary composers use Chinese folk music differently in their works (i.e., some use melodies, others use harmony, while others use modes), each work celebrates the music and culture of the folk music on which the pieces are based. It is the author's hope to stimulate people's interest in music using Chinese folk music elements, and bring these lesser known works into the common clarinet repertoire.
ContributorsFeng, Chiao-Ting (Author) / Spring, Robert (Thesis advisor) / Gardner, Joshua (Committee member) / Micklich, Albie (Committee member) / Rogers, Rodney (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2013
152134-Thumbnail Image.png
Description
Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant,

Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant, expressing my mother's cheerful personality when she was alive. It also portrays bright summer days which resemble my mother's spirit. Thus, soundscape plays an important role in this work. It depicts summer breeze, rustling sounds of leaves, and, to translate a Korean saying, "high blue skies." This soundscape opens the piece as well as closes it. In the middle section, the fast upbeat themes represent my mother's witty and optimistic personality. The piece also contains the presence of a hymn tune, The Love of God is Greater Far, which informs the motivic content and also functions as the climax of the piece. It was my mother's favorite hymn and we used to sing it together following her conversion to Christianity. The piece contains three main sections, which are held together by transitional material based on the soundscape and metric modulations. Unlike my earlier works, Bright Summer is tonal, with upper tertian harmonies prevailing throughout the piece. However, the opening and closing soundscapes do not have functional harmonies. For example, tertian chords appear and vanish silently, leaving behind some resonant sounds without any harmonic progression. Overall, the whole piece is reminiscent of my mother who lived a beautiful life.
ContributorsKim, JeeYeon (Composer) / DeMars, James (Thesis advisor) / Hackbarth, Glenn (Committee member) / Rogers, Rodney (Committee member) / Levy, Benjamin (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
152153-Thumbnail Image.png
Description
Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.
ContributorsZhang, Hui (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Mittelmann, Hans D (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2013
151994-Thumbnail Image.png
Description
Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly

Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly organized into the following two parts: I) spatio-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power generation forecast and integration. First, a spatio-temporal analysis approach for short-term wind farm generation forecasting is proposed. Specifically, using extensive measurement data from an actual wind farm, the probability distribution and the level crossing rate of wind farm generation are characterized using tools from graphical learning and time-series analysis. Built on these spatial and temporal characterizations, finite state Markov chain models are developed, and a point forecast of wind farm generation is derived using the Markov chains. Then, multi-timescale scheduling and dispatch with stochastic wind generation and opportunistic demand response is investigated. Part II focuses on incorporating the emerging synchrophasor technology into the security assessment and the post-disturbance fault diagnosis of power systems. First, a data-mining framework is developed for on-line dynamic security assessment by using adaptive ensemble decision tree learning of real-time synchrophasor measurements. Under this framework, novel on-line dynamic security assessment schemes are devised, aiming to handle various factors (including variations of operating conditions, forced system topology change, and loss of critical synchrophasor measurements) that can have significant impact on the performance of conventional data-mining based on-line DSA schemes. Then, in the context of post-disturbance analysis, fault detection and localization of line outage is investigated using a dependency graph approach. It is shown that a dependency graph for voltage phase angles can be built according to the interconnection structure of power system, and line outage events can be detected and localized through networked data fusion of the synchrophasor measurements collected from multiple locations of power grids. Along a more practical avenue, a decentralized networked data fusion scheme is proposed for efficient fault detection and localization.
ContributorsHe, Miao (Author) / Zhang, Junshan (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Hedman, Kory (Committee member) / Si, Jennie (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151947-Thumbnail Image.png
Description
GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that of GaAs-based HEMT and mobility much higher than Si enables

GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that of GaAs-based HEMT and mobility much higher than Si enables a low on-resistance required for RF devices. Self-heating issues with GaN HEMT and lack of understanding of various phenomena are hindering their widespread commercial development. There is a need to understand device operation by developing a model which could be used to optimize electrical and thermal characteristics of GaN HEMT design for high power and high frequency operation. In this thesis work a physical simulation model of AlGaN/GaN HEMT is developed using commercially available software ATLAS from SILVACO Int. based on the energy balance/hydrodynamic carrier transport equations. The model is calibrated against experimental data. Transfer and output characteristics are the key focus in the analysis along with saturation drain current. The resultant IV curves showed a close correspondence with experimental results. Various combinations of electron mobility, velocity saturation, momentum and energy relaxation times and gate work functions were attempted to improve IV curve correlation. Thermal effects were also investigated to get a better understanding on the role of self-heating effects on the electrical characteristics of GaN HEMTs. The temperature profiles across the device were observed. Hot spots were found along the channel in the gate-drain spacing. These preliminary results indicate that the thermal effects do have an impact on the electrical device characteristics at large biases even though the amount of self-heating is underestimated with respect to thermal particle-based simulations that solve the energy balance equations for acoustic and optical phonons as well (thus take proper account of the formation of the hot-spot). The decrease in drain current is due to decrease in saturation carrier velocity. The necessity of including hydrodynamic/energy balance transport models for accurate simulations is demonstrated. Possible ways for improving model accuracy are discussed in conjunction with future research.
ContributorsChowdhury, Towhid (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151953-Thumbnail Image.png
Description
Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.
ContributorsDasarathan, Sivaraman (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Reisslein, Martin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151775-Thumbnail Image.png
Description
ABSTRACT Musicians endure injuries at an alarming rate, largely due to the misuse of their bodies. Musicians move their bodies for a living and therefore should understand how to move them in a healthy way. This paper presents Body Mapping as an injury prevention technique specifically directed toward collaborative pianists.

ABSTRACT Musicians endure injuries at an alarming rate, largely due to the misuse of their bodies. Musicians move their bodies for a living and therefore should understand how to move them in a healthy way. This paper presents Body Mapping as an injury prevention technique specifically directed toward collaborative pianists. A body map is the self-representation in one's brain that includes information on the structure, function, and size of one's body; Body Mapping is the process of refining one's body map to produce coordinated movement. In addition to preventing injury, Body Mapping provides a means to achieve greater musical artistry through the training of movement, attention, and the senses. With the main function of collaborating with one or more musical partners, a collaborative pianist will have the opportunity to share the knowledge of Body Mapping with many fellow musicians. This study demonstrates the author's credentials as a Body Mapping instructor, the current status of the field of collaborative piano, and the recommendation for increased body awareness. Information on the nature and abundance of injuries and Body Mapping concepts are also analyzed. The study culminates in a course syllabus entitled An Introduction to Collaborative Piano and Body Mapping with the objective of imparting fundamental collaborative piano skills integrated with proper body use. The author hopes to inform educators of the benefits of prioritizing health among their students and to provide a Body Mapping foundation upon which their students can build technique.
ContributorsBindel, Jennifer (Author) / Campbell, Andrew (Thesis advisor) / Doan, Jerry (Committee member) / Rogers, Rodney (Committee member) / Ryan, Russell (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2013
151814-Thumbnail Image.png
Description
This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the

This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals assists in categorizing defects leading to failure/degradation as: oxygen vacancies, thermally activated defects within the bandgap, channel-dielectric interface defects, and acceptor-like or donor-like trap states. Microwave anneal has been confirmed to enhance the quality of thin films, however future work entails extending the use of electromagnetic radiation in controlled ambient to facilitate quick post fabrication anneal to improve the functionality and lifetime of these low temperature fabricated TFTs.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, N David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013