Matching Items (54)
151720-Thumbnail Image.png
Description
Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides

Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.
ContributorsGuo, Da (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Sankin, Igor (Committee member) / Arizona State University (Publisher)
Created2013
151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
151648-Thumbnail Image.png
Description
Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has become a major factor. In this thesis, self-heating effects in a 25nm fully depleted (FD) SOI device are studied by implementing a 2-D particle based device simulator coupled self-consistently with the energy balance equations for both acoustic and optical phonons. Semi-analytical expressions for acoustic and optical phonon scattering rates (all modes) are derived and evaluated using quadratic dispersion relationships. Moreover, probability distribution functions for the final polar angle after scattering is also computed and the rejection technique is implemented for its selection. Since the temperature profile varies throughout the device, temperature dependent scattering tables are used for the electron transport kernel. The phonon energy balance equations are also modified to account for inelasticity in acoustic phonon scattering for all branches. Results obtained from this simulation help in understanding self-heating and the effects it has on the device characteristics. The temperature profiles in the device show a decreasing trend which can be attributed to the inelastic interaction between the electrons and the acoustic phonons. This is further proven by comparing the temperature plots with the simulation results that assume the elastic and equipartition approximation for acoustic and the Einstein model for optical phonons. Thus, acoustic phonon inelasticity and the quadratic phonon dispersion relationships play a crucial role in studying self-heating effects.
ContributorsGada, Manan Laxmichand (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Arizona State University (Publisher)
Created2013
151557-Thumbnail Image.png
Description
This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model was developed to model the piezoelectric polarization charge dependence on the applied gate voltage. As the sheet electron density in

This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model was developed to model the piezoelectric polarization charge dependence on the applied gate voltage. As the sheet electron density in the channel increases, the influence of electromechanical coupling reduces as the electric field in the comprising layers reduces. A Monte Carlo device simulator that implements the theoretical model was developed to model the transport in GaN HEMTs. It is observed that with the coupled formulation, the drain current degradation in the device varies from 2%-18% depending on the gate voltage. Degradation reduces with the increase in the gate voltage due to the increase in the electron gas density in the channel. The output and transfer characteristics match very well with the experimental data. An electro-thermal device simulator was developed coupling the Monte Caro-Poisson solver with the energy balance solver for acoustic and optical phonons. An output current degradation of around 2-3 % at a drain voltage of 5V due to self-heating was observed. It was also observed that the electrostatics near the gate to drain region of the device changes due to the hot spot created in the device from self heating. This produces an electric field in the direction of accelerating the electrons from the channel to surface states. This will aid to the current collapse phenomenon in the device. Thus, the electric field in the gate to drain region is very critical for reliable performance of the device. Simulations emulating the charging of the surface states were also performed and matched well with experimental data. Methods to improve the reliability performance of the device were also investigated in this work. A shield electrode biased at source potential was used to reduce the electric field in the gate to drain extension region. The hot spot position was moved away from the critical gate to drain region towards the drain as the shield electrode length and dielectric thickness were being altered.
ContributorsPadmanabhan, Balaji (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Alford, Terry L. (Committee member) / Venkatraman, Prasad (Committee member) / Arizona State University (Publisher)
Created2013
151454-Thumbnail Image.png
Description
Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures.

Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures. The emission characteristics are examined by cathodoluminescence spectroscopy and imaging, and are correlated with the structural and electrical properties studied by transmission electron microscopy and electron holography. Four major areas are covered in this dissertation, which are described next. The effect of strain on the emission characteristics in wurtzite GaN has been studied. The values of the residual strain in GaN epilayers with different dislocation densities are determined by x-ray diffraction, and the relationship between exciton emission energy and the in-plane residual strain is demonstrated. It shows that the emission energy increases withthe magnitude of the in-plane compressive strain. The temperature dependence of the emission characteristics in cubic GaN has been studied. It is observed that the exciton emission and donor-acceptor pair recombination behave differently with temperature. The donor-bound exciton binding energy has been measured to be 13 meV from the temperature dependence of the emission spectrum. It is also found that the ionization energies for both acceptors and donors are smaller in cubic compared with hexagonal structures, which should contribute to higher doping efficiencies. A comprehensive study on the structural and optical properties is presented for InGaN/GaN quantum wells emitting in the blue, green, and yellow regions of the electromagnetic spectrum. Transmission electron microscopy images indicate the presence of indium inhomogeneties which should be responsible for carrier localization. The temperature dependence of emission luminescence shows that the carrier localization effects become more significant with increasing emission wavelength. On the other hand, the effect of non-radiative recombination on luminescence efficiency also varies with the emission wavelength. The fast increase of the non-radiative recombination rate with temperature in the green emitting QWs contributes to the lower efficiency compared with the blue emitting QWs. The possible saturation of non-radiative recombination above 100 K may explain the unexpected high emission efficiency for the yellow emitting QWs Finally, the effects of InGaN underlayers on the electronic and optical properties of InGaN/GaN quantum wells emitting in visible spectral regions have been studied. A significant improvement of the emission efficiency is observed, which is associated with a blue shift in the emission energy, a reduced recombination lifetime, an increased spatial homogeneity in the luminescence, and a weaker internal field across the quantum wells. These are explained by a partial strain relaxation introduced by the InGaN underlayer, which is measured by reciprocal space mapping of the x-ray diffraction intensity.
ContributorsLi, Di (Author) / Ponce, Fernando (Thesis advisor) / Culbertson, Robert (Committee member) / Yu, Hongbin (Committee member) / Shumway, John (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2012
151415-Thumbnail Image.png
Description
In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals in the plasma react with the carbon groups leading to carbon removal for the ILD films. Results indicate that an N2 plasma forms an amide-like layer on the surface which apparently leads to reduced carbon abstraction from an H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl (Si-OH) groups following the plasma exposure. Increased temperature (380 °C) processing leads to a reduction of the hydroxyl group formation compared to ambient temperature processes, resulting in reduced changes of the dielectric constant. For CMP Cu surfaces, the carbonate contamination was removed by an H2 plasma process at elevated temperature while the C-C and C-H contamination was removed by an N2 plasma process at elevated temperature. The second part of this study examined oxide stability and cleaning of Ru surfaces as well as consequent Cu film thermal stability with the Ru layers. The ~2 monolayer native Ru oxide was reduced after H-plasma processing. The thermal stability or islanding of the Cu film on the Ru substrate was characterized by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu islanding was detected and was described in terms of grain boundary grooving and surface and interface energies. The thermal stability of 7 nm Ti, Pt and Ru ii interfacial adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 nm) have been investigated in the third part. The barrier properties and interfacial stability have been evaluated by Rutherford backscattering spectrometry (RBS). Atomic force microscopy (AFM) was used to measure the surfaces before and after annealing, and all the surfaces are relatively smooth excluding islanding or de-wetting phenomena as a cause of the instability. The RBS showed no discernible diffusion across the adhesion layer/Ta and Ta/Si interfaces which provides a stable underlying layer. For a Ti interfacial layer RBS indicates that during 400 °C annealing Ti interdiffuses through the Cu film and accumulates at the surface. For the Pt/Cu system Pt interdiffuion is detected which is less evident than Ti. Among the three adhesion layer candidates, Ru shows negligible diffusion into the Cu film indicating thermal stability at 400 °C.
ContributorsLiu, Xin (Author) / Nemanich, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Chen, Tingyong (Committee member) / Smith, David (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2012
152645-Thumbnail Image.png
Description
Semiconductor nanowires are important candidates for highly scaled three dimensional electronic devices. It is very advantageous to combine their scaling capability with the high yield of planar CMOS technology by integrating nanowire devices into planar circuits. The purpose of this research is to identify the challenges associated with the fabrication

Semiconductor nanowires are important candidates for highly scaled three dimensional electronic devices. It is very advantageous to combine their scaling capability with the high yield of planar CMOS technology by integrating nanowire devices into planar circuits. The purpose of this research is to identify the challenges associated with the fabrication of vertically oriented Si and Ge nanowire diodes and modeling their electrical behavior so that they can be utilized to create unique three dimensional architectures that can boost the scaling of electronic devices into the next generation. In this study, vertical Ge and Si nanowire Schottky diodes have been fabricated using bottom-up vapor-liquid-solid (VLS) and top-down reactive ion etching (RIE) approaches respectively. VLS growth yields nanowires with atomically smooth sidewalls at sub-50 nm diameters but suffers from the problem that the doping increases radially outwards from the core of the devices. RIE is much faster than VLS and does not suffer from the problem of non-uniform doping. However, it yields nanowires with rougher sidewalls and gets exceedingly inefficient in yielding vertical nanowires for diameters below 50 nm. The I-V characteristics of both Ge and Si nanowire diodes cannot be adequately fit by the thermionic emission model. Annealing in forming gas which passivates dangling bonds on the nanowire surface is shown to have a considerable impact on the current through the Si nanowire diodes indicating that fixed charges and traps on the surface of the devices play a major role in determining their electrical behavior. Also, due to the vertical geometry of the nanowire diodes, electric field lines originating from the metal and terminating on their sidewalls can directly modulate their conductivity. Both these effects have to be included in the model aimed at predicting the current through vertical nanowire diodes. This study shows that the current through vertical nanowire diodes cannot be predicted accurately using the thermionic emission model which is suitable for planar devices and identifies the factors needed to build a comprehensive analytical model for predicting the current through vertically oriented nanowire diodes.
ContributorsChandra, Nishant (Author) / Goodnick, Stephen M (Thesis advisor) / Tracy, Clarence J. (Committee member) / Yu, Hongbin (Committee member) / Ferry, David K. (Committee member) / Arizona State University (Publisher)
Created2014
152484-Thumbnail Image.png
Description
In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25-220 ºC). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and potentially passivate N-vacancy related defects. The surface band bending and polarization charge compensation of Ga- and N-face GaN were investigated. The surface band bending and band offsets were determined for Al2O3, HfO2, and SiO2 on Ga- and N-face GaN. Different dielectric thicknesses and post deposition processing were investigated to understand process related defect formation and/or reduction.
ContributorsYang, Jialing (Author) / Nemanich, Robert J (Thesis advisor) / Chen, Tingyong (Committee member) / Peng, Xihong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2014
152386-Thumbnail Image.png
Description
In this dissertation, combined photo-induced and thermionic electron emission from low work function diamond films is studied through low energy electron spectroscopy analysis and other associated techniques. Nitrogen-doped, hydrogen-terminated diamond films prepared by the microwave plasma chemical vapor deposition method have been the most focused material. The theme of this

In this dissertation, combined photo-induced and thermionic electron emission from low work function diamond films is studied through low energy electron spectroscopy analysis and other associated techniques. Nitrogen-doped, hydrogen-terminated diamond films prepared by the microwave plasma chemical vapor deposition method have been the most focused material. The theme of this research is represented by four interrelated issues. (1) An in-depth study describes combined photo-induced and thermionic emission from nitrogen-doped diamond films on molybdenum substrates, which were illuminated with visible light photons, and the electron emission spectra were recorded as a function of temperature. The diamond films displayed significant emissivity with a low work function of ~ 1.5 eV. The results indicate that these diamond emitters can be applied in combined solar and thermal energy conversion. (2) The nitrogen-doped diamond was further investigated to understand the physical mechanism and material-related properties that enable the combined electron emission. Through analysis of the spectroscopy, optical absorbance and photoelectron microscopy results from sample sets prepared with different configurations, it was deduced that the photo-induced electron generation involves both the ultra-nanocrystalline diamond and the interface between the diamond film and metal substrate. (3) Based on results from the first two studies, possible photon-enhanced thermionic emission was examined from nitrogen-doped diamond films deposited on silicon substrates, which could provide the basis for a novel approach for concentrated solar energy conversion. A significant increase of emission intensity was observed at elevated temperatures, which was analyzed using computer-based modeling and a combination of different emission mechanisms. (4) In addition, the electronic structure of vanadium-oxide-terminated diamond surfaces was studied through in-situ photoemission spectroscopy. Thin layers of vanadium were deposited on oxygen-terminated diamond surfaces which led to oxide formation. After thermal annealing, a negative electron affinity was found on boron-doped diamond, while a positive electron affinity was found on nitrogen-doped diamond. A model based on the barrier at the diamond-oxide interface was employed to analyze the results. Based on results of this dissertation, applications of diamond-based energy conversion devices for combined solar- and thermal energy conversion are proposed.
ContributorsSun, Tianyin (Author) / Nemanich, Robert (Thesis advisor) / Ponce, Fernando (Committee member) / Peng, Xihong (Committee member) / Spence, John (Committee member) / Treacy, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152352-Thumbnail Image.png
Description
This thesis describes the fabrication of several new classes of Ge1-x-ySixSny materials with the required compositions and crystal quality to engineer the band gaps above and below that of elemental Ge (0.8 eV) in the near IR. The work initially focused on Ge1-x-ySixSny (1-5% Sn, 4-20% Si) materials grown on

This thesis describes the fabrication of several new classes of Ge1-x-ySixSny materials with the required compositions and crystal quality to engineer the band gaps above and below that of elemental Ge (0.8 eV) in the near IR. The work initially focused on Ge1-x-ySixSny (1-5% Sn, 4-20% Si) materials grown on Ge(100) via gas-source epitaxy of Ge4H10, Si4H10 and SnD4. Both intrinsic and doped layers were produced with defect-free microstructure and viable thickness, allowing the fabrication of high-performance photodetectors. These exhibited low ideality factors, state-of-the-art dark current densities and adjustable absorption edges between 0.87 and 1.03 eV, indicating that the band gaps span a significant range above that of Ge. Next Sn-rich Ge1-x-ySixSny alloys (2-4% Si and 4-10% Sn) were fabricated directly on Si and were found to show significant optical emission using photoluminescence measurements, indicating that the alloys have direct band gaps below that of pure Ge in the range of 0.7-0.55 eV. A series of Sn-rich Ge1-x-ySixSny analogues (y>x) with fixed 3-4% Si content and progressively increasing Sn content in the 4-10% range were then grown on Ge buffered Si platforms for the purpose of improving the material's crystal quality. The films in this case exhibited lower defect densities than those grown on Si, allowing a meaningful study of both the direct and indirect gaps. The results show that the separation of the direct and indirect edges can be made smaller than in Ge even for non-negligible 3-4% Si content, confirming that with a suitable choice of Sn compositions the ternary Ge1-x-ySixSny reproduces all features of the electronic structure of binary Ge1-ySny, including the sought-after indirect-to-direct gap cross over. The above synthesis of optical quality Ge1-x-ySixSny on virtual Ge was made possible by the development of high quality Ge-on-Si buffers via chemical vapor deposition of Ge4H10. The resultant films exhibited structural and electrical properties significantly improved relative to state-of-the-art results obtained using conventional approaches. It was found that pure Ge4H10 facilitates the control of residual doping and enables p-i-n devices whose dark currents are not entirely determined by defects and whose zero-bias collection efficiencies are higher than those obtained from samples fabricated using alternative Ge-on-Si approaches.
ContributorsXu, Chi (Author) / Kouvetakis, John (Thesis advisor) / Menéndez, Jose (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Drucker, Jeffrey (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013