Matching Items (20)
Filtering by

Clear all filters

150319-Thumbnail Image.png
Description
This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are capable of identifying this system. The challenge in identification also lies in the coupled behavior of the system and in the difficulty of obtaining the full-range dynamics. The differential equations describing the system dynamics are determined from measurements of the system's input-output behavior. These equations are assumed to consist of the superposition, with unknown weights, of a small number of terms drawn from a large library of nonlinear terms. Under this assumption, compressed sensing allows the constituent library elements and their corresponding weights to be identified by decomposing a time-series signal of the system's outputs into a sparse superposition of corresponding time-series signals produced by the library components. The most popular techniques for non-linear system identification entail the use of ANN's (Artificial Neural Networks), which require a large number of measurements of the input and output data at high sampling frequencies. The method developed in this project requires very few samples and the accuracy of reconstruction is extremely high. Furthermore, this method yields the Ordinary Differential Equation (ODE) of the system explicitly. This is in contrast to some ANN approaches that produce only a trained network which might lose fidelity with change of initial conditions or if facing an input that wasn't used during its training. This technique is expected to be of value in system identification of complex dynamic systems encountered in diverse fields such as Biology, Computation, Statistics, Mechanics and Electrical Engineering.
ContributorsNaik, Manjish Arvind (Author) / Cochran, Douglas (Thesis advisor) / Kovvali, Narayan (Committee member) / Kawski, Matthias (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2011
149906-Thumbnail Image.png
Description
In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of

In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen.
ContributorsPatani, Nura (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Bremner, Andrew (Committee member) / Kawski, Matthias (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2011
150418-Thumbnail Image.png
Description
Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.
ContributorsSoho, Edmé L (Author) / Wirkus, Stephen (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2011
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
157198-Thumbnail Image.png
Description
In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique.

In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique. This thesis explores one possible construction (originally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices, and thin subgroups in SU(2,1).
ContributorsWells, Joseph (Author) / Paupert, Julien (Thesis advisor) / Kotschwar, Brett (Committee member) / Childress, Nancy (Committee member) / Fishel, Susanna (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2019
Description
Mathematical models are important tools for addressing problems that exceed experimental capabilities. In this work, I present ordinary and partial differential equation (ODE, PDE) models for two problems: Vicodin abuse and impact cratering.

The prescription opioid Vicodin is the nation's most widely prescribed pain reliever. The majority of Vicodin abusers

Mathematical models are important tools for addressing problems that exceed experimental capabilities. In this work, I present ordinary and partial differential equation (ODE, PDE) models for two problems: Vicodin abuse and impact cratering.

The prescription opioid Vicodin is the nation's most widely prescribed pain reliever. The majority of Vicodin abusers are first introduced via prescription, distinguishing it from other drugs in which the most common path to abuse begins with experimentation. I develop and analyze two mathematical models of Vicodin use and abuse, considering only those patients with an initial Vicodin prescription. Through adjoint sensitivity analysis, I show that focusing efforts on prevention rather than treatment has greater success at reducing the total population of abusers. I prove that solutions to each model exist, are unique, and are non-negative. I also derive conditions for which these solutions are asymptotically stable.

Verification and Validation (V&V) are necessary processes to ensure accuracy of computational methods. Simulations are essential for addressing impact cratering problems, because these problems often exceed experimental capabilities. I show that the Free Lagrange (FLAG) hydrocode, developed and maintained by Los Alamos National Laboratory, can be used for impact cratering simulations by verifying FLAG against two analytical models of aluminum-on-aluminum impacts at different impact velocities and validating FLAG against a glass-into-water laboratory impact experiment. My verification results show good agreement with the theoretical maximum pressures, and my mesh resolution study shows that FLAG converges at resolutions low enough to reduce the required computation time from about 28 hours to about 25 minutes.

Asteroid 16 Psyche is the largest M-type (metallic) asteroid in the Main Asteroid Belt. Radar albedo data indicate Psyche's surface is rich in metallic content, but estimates for Psyche's composition vary widely. Psyche has two large impact structures in its Southern hemisphere, with estimated diameters from 50 km to 70 km and estimated depths up to 6.4 km. I use the FLAG hydrocode to model the formation of the largest of these impact structures. My results indicate an oblique angle of impact rather than a vertical impact. These results also support previous claims that Psyche is metallic and porous.
ContributorsCaldwell, Wendy K (Author) / Wirkus, Stephen (Thesis advisor) / Asphaug, Erik (Committee member) / Camacho, Erika T (Committee member) / Crook, Sharon (Committee member) / Plesko, Catherine S (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2019
149643-Thumbnail Image.png
Description
Infectious diseases are a leading cause of death worldwide. With the development of drugs, vaccines and antibiotics, it was believed that for the first time in human history diseases would no longer be a major cause of mortality. Newly emerging diseases, re-emerging diseases and the emergence of microorganisms resistant to

Infectious diseases are a leading cause of death worldwide. With the development of drugs, vaccines and antibiotics, it was believed that for the first time in human history diseases would no longer be a major cause of mortality. Newly emerging diseases, re-emerging diseases and the emergence of microorganisms resistant to existing treatment have forced us to re-evaluate our optimistic perspective. In this study, a simple mathematical framework for super-infection is considered in order to explore the transmission dynamics of drug-resistance. Through its theoretical analysis, we identify the conditions necessary for the coexistence between sensitive strains and drug-resistant strains. Farther, in order to investigate the effectiveness of control measures, the model is extended so as to include vaccination and treatment. The impact that these preventive and control measures may have on its disease dynamics is evaluated. Theoretical results being confirmed via numerical simulations. Our theoretical results on two-strain drug-resistance models are applied in the context of Malaria, antimalarial drugs, and the administration of a possible partially effective vaccine. The objective is to develop a monitoring epidemiological framework that help evaluate the impact of antimalarial drugs and partially-effective vaccine in reducing the disease burden at the population level. Optimal control theory is applied in the context of this framework in order to assess the impact of time dependent cost-effective treatment efforts. It is shown that cost-effective combinations of treatment efforts depend on the population size, cost of implementing treatment controls, and the parameters of the model. We use these results to identify optimal control strategies for several scenarios.
ContributorsUrdapilleta, Alicia (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Wang, Xiaohong (Thesis advisor) / Wirkus, Stephen (Committee member) / Camacho, Erika (Committee member) / Arizona State University (Publisher)
Created2011
Description
Acetylcholinesterase (AChE) inhibition by chemical toxicants such as organophosphates, nerve agents, and carbamates can lead to a series of adverse health outcomes including seizures, coma, and death. An adverse outcome pathway (AOP) is a framework that describes a series of biologically measurable key events (KEs) leading from some molecular initiating

Acetylcholinesterase (AChE) inhibition by chemical toxicants such as organophosphates, nerve agents, and carbamates can lead to a series of adverse health outcomes including seizures, coma, and death. An adverse outcome pathway (AOP) is a framework that describes a series of biologically measurable key events (KEs) leading from some molecular initiating event (MIE) to an adverse outcome (AO) of regulatory significance, all developed and hosted in the AOP Wiki. A quantitative AOP (qAOP) is a mathematical model that predicts how perturbations in the MIE affect KEs based on the key event relationships (KERs) that define the AOP. The purpose of this thesis was to expand upon the KERs that define the AOP for AChE inhibition leading to neurodegeneration in order to better understand the effects of AChE inhibitors and the risks they pose to ecosystems, wildlife, and human health. In order to reduce the resources and time spent for chemical toxicity testing, a qAOP was developed based on the available quantitative data and models that supported the AOP. A literature review for the collection of qualitative evidence and quantitative data in support of the AOP was performed resulting in further expansion of the relationships between key events (KERs) through construction of additional KER description pages. A model evaluation was performed by comparing the qAOP model predictions with experimental data, with a subsequent sensitivity analysis of unknown parameters. The qAOP model simulates the MIE through its fifth KE (KE 5) and KE 7. Model predictions compared to experimentally measured data either under- or overpredicting multiple KEs warranting additional refinement such as a formal parameter optimization. Overall, more data amenable to qAOP model development are needed. To aid qAOP model development, the presentation of data in the AOPWiki may be improved by presenting the quantitative data in the AOP Wiki in a tabular format and allowing for the hosting of mathematical models or raw data. With these recommendations in mind, and through continued AOP construction in the AOP Wiki, new qAOP models will be developed, ultimately supporting chemical risk assessment and the mitigation of effects upon exposed individuals and wildlife populations.
ContributorsSinitsyn, Dennis (Author) / Watanabe, Karen (Thesis advisor) / Vinas, Natalia (Committee member) / Wirkus, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
Description
Mark and Paupert concocted a general method for producing presentations for arithmetic non-cocompact lattices, \(\Gamma\), in isometry groups of negatively curved symmetric spaces. To get around the difficulty of constructing fundamental domains in spaces of variable curvature, their method invokes a classical theorem of Macbeath applied to a \(\Gamma\)-invariant

Mark and Paupert concocted a general method for producing presentations for arithmetic non-cocompact lattices, \(\Gamma\), in isometry groups of negatively curved symmetric spaces. To get around the difficulty of constructing fundamental domains in spaces of variable curvature, their method invokes a classical theorem of Macbeath applied to a \(\Gamma\)-invariant covering by horoballs of the negatively curved symmetric space upon which \(\Gamma\) acts. This thesis aims to explore the application of their method to the Picard modular groups, PU\((2,1;\mathcal{O}_{d})\), acting on \(\mathbb{H}_{\C}^2\). This document contains the derivations for the group presentations corresponding to \(d=2,11\), which completes the list of presentations for Picard modular groups whose entries lie in Euclidean domains, namely those with \(d=1,2,3,7,11\). There are differences in the method's application when the lattice of interest has multiple cusps. \(d = 5\) is the smallest value of \(d\) for which the corresponding Picard modular group, \(\PU(2,1;\mathcal{O}_5)\), has multiple cusps, and the method variations become apparent when working in this case.
ContributorsPolletta, David Michael (Author) / Paupert, Julien H (Thesis advisor) / Kotschwar, Brett (Committee member) / Fishel, Susanna (Committee member) / Kawski, Matthias (Committee member) / Childress, Nancy (Committee member) / Arizona State University (Publisher)
Created2021
171851-Thumbnail Image.png
Description
A leading crisis in the United States is the opioid use disorder (OUD) epidemic. Opioid overdose deaths have been increasing, with over 100,000 deaths due to overdose from April 2020 to April 2021. This dissertation presents two mathematical models to address illicit OUD (IOUD), treatment, and recovery within an epidemiological

A leading crisis in the United States is the opioid use disorder (OUD) epidemic. Opioid overdose deaths have been increasing, with over 100,000 deaths due to overdose from April 2020 to April 2021. This dissertation presents two mathematical models to address illicit OUD (IOUD), treatment, and recovery within an epidemiological framework. In the first model, individuals remain in the recovery class unless they relapse. Due to the limited availability of specialty treatment facilities for individuals with OUD, a saturation treat- ment function was incorporated. The second model is an extension of the first, where a casual user class and its corresponding specialty treatment class were added. Using U.S. population data, the data was scaled to a population of 200,000 to find parameter estimates. While the first model used the heroin-only dataset, the second model used both the heroin and all-illicit opioids datasets. Backward bifurcation was found in the first IOUD model for realistic parameter values. Additionally, bistability was observed in the second IOUD model with the heroin-only dataset. This result implies that it would be beneficial to increase the availability of treatment. An alarming effect was discovered about the high overdose death rate: by 2038, the disease-free equilibrium would be the only stable equilibrium. This consequence is concerning because although the goal is for the epidemic to end, it would be preferable to end it through treatment rather than overdose. The IOUD model with a casual user class, its sensitivity results, and the comparison of parameters for both datasets, showed the importance of not overlooking the influence that casual users have in driving the all-illicit opioid epidemic. Casual users stay in the casual user class longer and are not going to treatment as quickly as the users of the heroin epidemic. Another result was that the users of the all-illicit opioids were going to the recovered class by means other than specialty treatment. However, the relapse rates for those individuals were much more significant than in the heroin-only epidemic. The results above from analyzing these models may inform health and policy officials, leading to more effective treatment options and prevention efforts.
ContributorsCole, Sandra (Author) / Wirkus, Stephen (Thesis advisor) / Gardner, Carl (Committee member) / Lanchier, Nicolas (Committee member) / Camacho, Erika (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2022