Matching Items (103)
148162-Thumbnail Image.png
Description

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes details associated with it to inform aspects of their life. Phoenix, Arizona is a dry, desert region that experiences a monsoon season and extreme heat. How then, does the weather forecast influence the way Phoenix residents make decisions? This paper aims to draw connections between the weather forecast, decision making, and people who live in a desert environment. To do this, a ten-minute survey was deployed through Amazon Mechanical Turk (MTurk) in which 379 respondents were targeted. The survey asks 45 multiple choice and ranking questions categorized into four sections: obtainment of the forecast, forecast variables of interest, informed decision making based on unique weather variables, and demographics. This research illuminates how residents in the Phoenix metropolitan area use the local weather forecast for decision-making on daily activities, and the main meteorological factors that drive those decisions.

ContributorsMarturano, Julia (Author) / Middel, Ariane (Thesis director) / Schneider, Florian (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152291-Thumbnail Image.png
Description
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
ContributorsLiu, Hao (Author) / Kuang, Yang (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Lanchier, Nicolas (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2013
152299-Thumbnail Image.png
Description
Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health

Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health impacts in urban areas, where large numbers of vulnerable people reside and where local-scale urban heat island effects (UHI) retard and reduce nighttime cooling. This dissertation presents three empirical case studies that were conducted to advance our understanding of human vulnerability to heat in coupled human-natural systems. Using vulnerability theory as a framework, I analyzed how various social and environmental components of a system interact to exacerbate or mitigate heat impacts on human health, with the goal of contributing to the conceptualization of human vulnerability to heat. The studies: 1) compared the relationship between temperature and health outcomes in Chicago and Phoenix; 2) compared a map derived from a theoretical generic index of vulnerability to heat with a map derived from actual heat-related hospitalizations in Phoenix; and 3) used geospatial information on health data at two areal units to identify the hot spots for two heat health outcomes in Phoenix. The results show a 10-degree Celsius difference in the threshold temperatures at which heat-stress calls in Phoenix and Chicago are likely to increase drastically, and that Chicago is likely to be more sensitive to climate change than Phoenix. I also found that heat-vulnerability indices are sensitive to scale, measurement, and context, and that cities will need to incorporate place-based factors to increase the usefulness of vulnerability indices and mapping to decision making. Finally, I found that identification of geographical hot-spot of heat-related illness depends on the type of data used, scale of measurement, and normalization procedures. I recommend using multiple datasets and different approaches to spatial analysis to overcome this limitation and help decision makers develop effective intervention strategies.
ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Thesis advisor) / Boone, Christopher (Committee member) / Guhathakurta, Subhrajit (Committee member) / Ruddell, Darren (Committee member) / Arizona State University (Publisher)
Created2013
151549-Thumbnail Image.png
Description
Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision support. This dissertation suggests a disjoint exists between practice and research that stems from differences in how visualization researchers conceptualize

Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision support. This dissertation suggests a disjoint exists between practice and research that stems from differences in how visualization researchers conceptualize uncertainty and how decision makers frame uncertainty. To bridge this gap between practice and research, this dissertation explores uncertainty visualization as a means for reframing uncertainty in geographic information systems for use in policy decision support through three connected topics. Initially, this research explores visualizing the relationship between uncertainty and policy outcomes as a means for incorporating policymakers' decision frames when visualizing uncertainty. Outcome spaces are presented as a method to represent the effect of uncertainty on policy outcomes. This method of uncertainty visualization acts as an uncertainty map, representing all possible outcomes for specific policy decisions. This conceptual model incorporates two variables, but implicit uncertainty can be extended to multivariate representations. Subsequently, this work presented a new conceptualization of uncertainty, termed explicit and implicit, that integrates decision makers' framing of uncertainty into uncertainty visualization. Explicit uncertainty is seen as being separate from the policy outcomes, being described or displayed separately from the underlying data. In contrast, implicit uncertainty links uncertainty to decision outcomes, and while understood, it is not displayed separately from the data. The distinction between explicit and implicit is illustrated through several examples of uncertainty visualization founded in decision science theory. Lastly, the final topic assesses outcome spaces for communicating uncertainty though a human subject study. This study evaluates the effectiveness of the implicit uncertainty visualization method for communicating uncertainty for policy decision support. The results suggest that implicit uncertainty visualization successfully communicates uncertainty in results, even though uncertainty is not explicitly shown. Participants also found the implicit visualization effective for evaluating policy outcomes. Interestingly, participants also found the explicit uncertainty visualization to be effective for evaluating the policy outcomes, results that conflict with prior research.
ContributorsDeitrick, Stephanie (Author) / Wentz, Elizabeth (Thesis advisor) / Goodchild, Michael (Committee member) / Edsall, Robert (Committee member) / Gober, Patricia (Committee member) / Arizona State University (Publisher)
Created2013
152066-Thumbnail Image.png
Description
Sustainable urbanism offers a set of best practice planning and design prescriptions intended to reverse the negative environmental consequences of urban sprawl, which dominates new urban development in the United States. Master planned developments implementing sustainable urbanism are proliferating globally, garnering accolades within the planning community and skepticism among social

Sustainable urbanism offers a set of best practice planning and design prescriptions intended to reverse the negative environmental consequences of urban sprawl, which dominates new urban development in the United States. Master planned developments implementing sustainable urbanism are proliferating globally, garnering accolades within the planning community and skepticism among social scientists. Despite attention from supporters and critics alike, little is known about the actual environmental performance of sustainable urbanism. This dissertation addresses the reasons for this paucity of evidence and the capacity of sustainable urbanism to deliver the espoused environmental outcomes through alternative urban design and the conventional master planning framework for development through three manuscripts. The first manuscript considers the reasons why geography, which would appear to be a natural empirical home for research on sustainable urbanism, has yet to accumulate evidence that links design alternatives to environmental outcomes or to explain the social processes that mediate those outcomes. It argues that geography has failed to develop a coherent subfield based on nature-city interactions and suggests interdisciplinary bridging concepts to invigorate greater interaction between the urban and nature-society geographic subfields. The subsequent chapters deploy these bridging concepts to empirically examine case-studies in sustainable urbanism. The second manuscript utilizes fine scale spatial data to quantify differences in ecosystem services delivery across three urban designs in two phases of Civano, a sustainable urbanism planned development in Tucson, Arizona, and an adjacent, typical suburban development comparison community. The third manuscript considers the extent to which conventional master planning processes are fundamentally at odds with urban environmental sustainability through interviews with stakeholders involved in three planned developments: Civano (Tucson, Arizona), Mueller (Austin, Texas), and Prairie Crossing (Grayslake, Illinois). Findings from the three manuscripts reveal deep challenges in conceptualizing an empirical area of inquiry on sustainable urbanism, measuring the outcomes of urban design alternatives, and innovating planning practice within the constraints of existing institutions that facilitate conventional development. Despite these challenges, synthesizing the insights of geography and cognate fields holds promise in building an empirical body of knowledge that complements pioneering efforts of planners to innovate urban planning practice through the sustainable urbanism alternative.
ContributorsTurner, Victoria (Author) / Gober, Patricia (Thesis advisor) / Eakin, Hallie (Committee member) / Kinzig, Ann (Committee member) / Talen, Emily (Committee member) / Arizona State University (Publisher)
Created2013
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
150711-Thumbnail Image.png
Description
In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, which contends that the feedback is non-GABAergic and is achieved through the modulation of electrical potential in the intersynaptic cleft between cones and horizontal cells. In this study, a continuum spine model of the cone-horizontal cell synaptic circuitry is formulated. This model, a partial differential equation system, incorporates both the GABA and ephaptic feedback mechanisms. Simulation results, in comparison with experiments, indicate that the ephaptic mechanism is necessary in order for the model to capture the major spatial and temporal dynamics of the BIFE effect. In addition, simulations indicate that the GABA mechanism may play some minor modulation role.
ContributorsChang, Shaojie (Author) / Baer, Steven M. (Thesis advisor) / Gardner, Carl L (Thesis advisor) / Crook, Sharon M (Committee member) / Kuang, Yang (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2012
137413-Thumbnail Image.png
Description
In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion plus deterministic logistic growth. We introduce a stochastic component in the logistic growth in the form of a random growth

In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion plus deterministic logistic growth. We introduce a stochastic component in the logistic growth in the form of a random growth rate defined by a Poisson process. We show that this stochastic logistic growth model leads to a more accurate evaluation of the tumor growth compared its deterministic counterpart. We also discuss future plans to incorporate individual patient geometry, extend the model to three dimensions and to incorporate effects of different treatments into our model, in collaboration with a local hospital.
ContributorsManning, Michael Clare (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Gardner, Carl (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Letters and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-12
141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015