Matching Items (49)
157142-Thumbnail Image.png
Description
Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the ECM fibers via focal adhesion complexes. Such active forces consistently

Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the ECM fibers via focal adhesion complexes. Such active forces consistently remodel the local ECM (e.g., by re-orienting the collagen fibers, forming fiber bundles and increasing the local stiffness of ECM), leading to a dynamically evolving force network in the system that in turn regulates the collective migration of cells.

In this work, this novel mechanotaxis mechanism is investigated, i.e., the role of the ECM mediated active cellular force propagation in coordinating collective cell migration via computational modeling and simulations. The work mainly includes two components: (i) microstructure and micromechanics modeling of cellularized ECM (collagen) networks and (ii) modeling collective cell migration and self-organization in 3D ECM. For ECM modeling, a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization is devised. Analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. For modeling collective migratory behaviors of the cells, a minimal active-particle-on-network (APN) model is developed, in which reveals a dynamic transition in the system as the particle number density ρ increases beyond a critical value ρc, from an absorbing state in which the particles segregate into small isolated stationary clusters, to a dynamic state in which the majority of the particles join in a single large cluster undergone constant dynamic reorganization. The results, which are consistent with independent experimental results, suggest a robust mechanism based on ECM-mediated mechanical coupling for collective cell behaviors in 3D ECM.

For the future plan, further substantiate the minimal cell migration model by incorporating more detailed cell-ECM interactions and relevant sub-cellular mechanisms is needed, as well as further investigation of the effects of fiber alignment, ECM mechanical properties and externally applied mechanical cues on collective migration dynamics.
ContributorsNan, Hanqing (Author) / Jiao, Yang (Thesis advisor) / Alford, Terry (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
158390-Thumbnail Image.png
Description
Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an

Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an outburst of intense research to understand the feasible synthesis and exciting material properties of these class of materials. Despite their potential, studies to date show that it is extremely challenging to synthesize and manufacture 2D MOF at large scales with ultimate control over crystallinity and thickness.

The field of research to date has produced various synthesis routes which can further be used to design 2D materials with a range of organic ligands and metal linkers. This thesis seeks to extend these design rules to demonstrate the competitive growth of two- dimensional (2D) metal-organic frameworks(MOF) and their alloys to predict which ligands and metals can be combined, study the intercalation of Bromine in these frameworks and their alloys which leads to the discovery of reduced band gap in the layered MOF alloy.

In this study it has been shown that the key factor in achieving layered 2D MOFs and it relies on the use of carefully engineered ligands to terminate the out-of-plane sites on metal clusters thereby eliminating strong interlayer hydrogen bond formation.

The major contribution of pyridine is to replace interlayer hydrogen bonding or other weak chemical bonds. Overall results establish an entirely new synthesis method for producing highly crystalline and scalable 2D MOFs and their alloys. Bromine intercalation merits future studies on band gap engineering in these layered materials.
ContributorsVijay, Shiljashree (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew D (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020
158739-Thumbnail Image.png
Description
The structural and electronic properties of compositionally complex semiconductors have long been of both theoretical interest and engineering importance. As a new class of materials with an intrinsic compositional complexity, medium entropy alloys (MEAs) are immensely studied mainly for their excellent mechanical properties. The electronic properties of MEAs, however, are

The structural and electronic properties of compositionally complex semiconductors have long been of both theoretical interest and engineering importance. As a new class of materials with an intrinsic compositional complexity, medium entropy alloys (MEAs) are immensely studied mainly for their excellent mechanical properties. The electronic properties of MEAs, however, are less well investigated. In this thesis, various properties such as electronic, spin, and thermal properties of two three-dimensional (3D) and two two-dimensional (2D) compositionally complex semiconductors are demonstrated to have promising various applications in photovoltaic, thermoelectric, and spin quantum bits (qubits).3D semiconducting Si-Ge-Sn and C3BN alloys is firstly introduced. Density functional theory (DFT) calculations and Monte Carlo simulations show that the Si1/3Ge1/3Sn1/3 MEA exhibits a large local distortion effect yet no chemical short-range order. Single vacancies in this MEA can be stabilized by bond reformations while the alloy retains semiconducting. DFT and molecular dynamics calculations predict that increasing the compositional disorder in SiyGeySnx MEAs enhances their electrical conductivity while weakens the thermal conductivity at room temperature, making the SiyGeySnx MEAs promising functional materials for thermoelectric devices. Furthermore, the nitrogen-vacancy (NV) center analog in C3BN (NV-C3BN) is studied to explore its applications in quantum computers. This analog possesses similar properties to the NV center in diamond such as a highly localized spin density and strong hyperfine interactions, making C3BN suitable for hosting spin qubits. The analog also displays two zero-phonon-line energies corresponding to wavelengths close to the ideal telecommunication band width, useful for quantum communications.
2D semiconducting transition metal chalcogenides (TMCs) and PtPN are also investigated. The quaternary compositionally complex TMCs show tunable properties such as in-plane lattice constants, band gaps, and band alignment, using a high through-put workflow from DFT calculations in conjunction with the virtual crystal approximation. A novel 2D semiconductor PtPN of direct bandgap is also predicted, based on pentagonal tessellation.
The work in the thesis offers guidance to the experimental realization of these novel semiconductors, which serve as valuable prototypes of other compositionally complex systems from other elements.
ContributorsWang, Duo (Author) / Zhuang, Houlong (Thesis advisor) / Singh, Arunima (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2020
158742-Thumbnail Image.png
Description
Single-layer pentagonal materials have received limited attention compared with their counterparts with hexagonal structures. They are two-dimensional (2D) materials with pentagonal structures, that exhibit novel electronic, optical, or magnetic properties. There are 15 types of pentagonal tessellations which allow plenty of options for constructing 2D pentagonal lattices. Few of them

Single-layer pentagonal materials have received limited attention compared with their counterparts with hexagonal structures. They are two-dimensional (2D) materials with pentagonal structures, that exhibit novel electronic, optical, or magnetic properties. There are 15 types of pentagonal tessellations which allow plenty of options for constructing 2D pentagonal lattices. Few of them have been explored theoretically or experimentally. Studying this new type of 2D materials with density functional theory (DFT) will inspire the discovery of new 2D materials and open up applications of these materials in electronic and magnetic devices.In this dissertation, DFT is applied to discover novel 2D materials with pentagonal structures. Firstly, I examine the possibility of forming a 2D nanosheet with the vertices of type 15 pentagons occupied by boron, silicon, phosphorous, sulfur, gallium, germanium or tin atoms. I obtain different rearranged structures such as a single-layer gallium sheet with triangular patterns. Then the exploration expands to other 14 types of pentagons, leading to the discoveries of carbon nanosheets with Cairo tessellation (type 2/4 pentagons) and other patterns. The resulting 2D structures exhibit diverse electrical properties. Then I reveal the hidden Cairo tessellations in the pyrite structures and discover a family of planar 2D materials (such as PtP2), with a chemical formula of AB2 and space group pa ̄3. The combination of DFT and geometries opens up a novel route for the discovery of new 2D materials. Following this path, a series of 2D pentagonal materials such as 2D CoS2 are revealed with promising electronic and magnetic applications. Specifically, the DFT calculations show that CoS2 is an antiferromagnetic semiconductor with a band gap of 2.24 eV, and a N ́eel temperature of about 20 K. In order to enhance the superexchange interactions between the ions in this binary compound, I explore the ternary 2D pentagonal material CoAsS, that lacks the inversion symmetry. I find out CoAsS exhibits a higher Curie temperature of 95 K and a sizable piezoelectricity (d11=-3.52 pm/V). In addition to CoAsS, 34 ternary 2D pentagonal materials are discovered, among which I focus on FeAsS, that is a semiconductor showing strong magnetocrystalline anisotropy and sizable Berry curvature. Its magnetocrystalline anisotropy energy is 440 μeV/Fe ion, higher than many other 2D magnets that have been found.
Overall, this work not only provides insights into the structure-property relationship of 2D pentagonal materials and opens up a new route of studying 2D materials by combining geometry and computational materials science, but also shows the potential applications of 2D pentagonal materials in electronic and magnetic devices.
ContributorsLiu, Lei (Author) / Zhuang, Houlong (Thesis advisor) / Singh, Arunima (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2020
157671-Thumbnail Image.png
Description
More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.
ContributorsTrivedi, Dipesh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
157679-Thumbnail Image.png
Description
Non-Destructive Testing (NDT) is a branch of scientific methods and techniques

used to evaluate the defects and irregularities in engineering materials. These methods

conduct testing without destroying or altering material’s structure and functionality. Most

of these defects are subsurface making them difficult to detect and access.

SONIC INFRARED (IR) is a relatively new and

Non-Destructive Testing (NDT) is a branch of scientific methods and techniques

used to evaluate the defects and irregularities in engineering materials. These methods

conduct testing without destroying or altering material’s structure and functionality. Most

of these defects are subsurface making them difficult to detect and access.

SONIC INFRARED (IR) is a relatively new and emerging vibrothermography

method under the category of NDT methods. This is a fast NDT inspection method that

uses an ultrasonic generator to pass an ultrasonic pulse through the test specimen which

results in a temperature variation in the test specimen. The temperature increase around

the area of the defect is more because of frictional heating due to the vibration of the

specimen. This temperature variation can be observed using a thermal camera.

In this research study, the temperature variation in the composite laminate during

the SONIC IR experimentation using an infrared thermal camera. These recorded data are

used to determine the location, dimension and depth of defects through SONIC IR NDT

method using existing defect detection algorithms. Probability of detection analysis is

used to determine the probability of detection under specific experimental conditions for

two different types of composite laminates. Lastly, the effect of the process parameters

such as number of pulses, pulse duration and time delay between pulses of this technique

on the detectability and probability of detection is studied in detail.
ContributorsDarnal, Aryabhat (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
157732-Thumbnail Image.png
Description
This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which

This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which are connected to the laser head and allow it to move on a plane. Next, a parametric study was designed to determine the optimum testing parameters of the laser. The parameters so selected were then used in a series of tests which helped in discerning how the Ultrasound Waves behave when damage is induced in the sample (in the form of addition of masses). The first test was of increasing the mases in the sample. The second test was a scan of a rectangular area of the sample with and without damage to find the effect of the added masses. Finally, the data collected in such a manner is processed with the help of the Hilbert-Huang transform to determine the time of arrival. The major benefits from this study are the fact that this is a Non-Destructive imaging technique and thus can be used as a new method for detection of defects and is fairly cheap as well.
ContributorsRavi Narayanan, Venkateshwaran (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
157742-Thumbnail Image.png
Description
Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting

Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting area for research. The analysis of propagation of fatigue crack growth under environmental interaction and the life prediction is significant to reduce the maintenance costs and assure structural integrity. Without proper investigation of the crack extension under corrosion fatigue, the scenario can lead to catastrophic disasters due to premature failure of a structure. An attempt has been made in this study to predict the corrosion fatigue crack growth with reasonable accuracy. Models that have been developed so far predict the crack propagation for constant amplitude loading (CAL). However, most of the industrial applications encounter random loading. Hence there is a need to develop models based on time scale. An existing time scale model that can predict the fatigue crack growth for constant and variable amplitude loading (VAL) in the Paris region is initially modified to extend the prediction to near threshold and unstable crack growth region. Extensive data collection was carried out to calibrate the model for corrosion fatigue crack growth (CFCG) based on the experimental data. The time scale model is improved to incorporate the effect of corrosive environments such as NaCl and dry hydrogen in the fatigue crack growth (FCG) by investigation of the trend in change of the crack growth. The time scale model gives the advantage of coupling the time phenomenon stress corrosion cracking which is suggested as a future work in this paper.
ContributorsKurian, Bianca (Author) / Liu, Yongming (Thesis advisor) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
158067-Thumbnail Image.png
Description
Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating materials to achieve complementary functionalities is still a growing need for designing advanced applications of complex requirements. This dissertation explores a unique approach of utilizing intermolecular interactions to accomplish not only the multifunctionality from combined materials but also their tailored properties designed for specific tasks. In this work, multifunctional soft materials are explored in two particular directions, ionic liquids (ILs)-based mixtures and interpenetrating polymer network (IPN).

First, ILs-based mixtures were studied to develop liquid electrolytes for molecular electronic transducers (MET) in planetary exploration. For space missions, it is challenging to operate any liquid electrolytes in an extremely low-temperature environment. By tuning intermolecular interactions, the results demonstrated a facile method that has successfully overcome the thermal and transport barriers of ILs-based mixtures at extremely low temperatures. Incorporation of both aqueous and organic solvents in ILs-based electrolyte systems with varying types of intermolecular interactions are investigated, respectively, to yield optimized material properties supporting not only MET sensors but also other electrochemical devices with iodide/triiodide redox couple targeting low temperatures.

Second, an environmentally responsive hydrogel was synthesized via interpenetrating two crosslinked polymer networks. The intermolecular interactions facilitated by such an IPN structure enables not only an upper critical solution temperature (UCST) transition but also a mechanical enhancement of the hydrogel. The incorporation of functional units validates a positive swelling response to visible light and also further improves the mechanical properties. This studied IPN system can serve as a promising route in developing “smart” hydrogels utilizing visible light as a simple, inexpensive, and remotely controllable stimulus.

Over two directions across from ILs to polymeric networks, this work demonstrates an effective strategy of utilizing intermolecular interactions to not only develop multifunctional soft materials for advanced applications but also discover new properties beyond their original boundaries.
ContributorsXu, Yifei (Author) / Dai, Lenore L. (Thesis advisor) / Forzani, Erica (Committee member) / Holloway, Julianne (Committee member) / Jiang, Hanqing (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020
161725-Thumbnail Image.png
Description
A new class of electronic materials from food and foodstuff was developed to form a “toolkit” for edible electronics along with inorganic materials. Electrical components like resistors, capacitors and inductors were fabricated with such materials and tested. Applicable devices such as filters, microphones and pH sensors were built with edible

A new class of electronic materials from food and foodstuff was developed to form a “toolkit” for edible electronics along with inorganic materials. Electrical components like resistors, capacitors and inductors were fabricated with such materials and tested. Applicable devices such as filters, microphones and pH sensors were built with edible materials. Among the applications, a wireless edible pH sensor was optimized in terms of form factor, fabrication process and cost. This dissertation discusses the material sciences of food industry, design and fabrication of electronics and biomedical engineering by demonstrating edible electronic materials, components and devices such as filters, microphones and pH sensors. pH sensors are optimized for two different generations of design and fabrication.
ContributorsYang, Haokai (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongbin (Thesis advisor) / Yao, Yu (Committee member) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021