Matching Items (396)
Filtering by

Clear all filters

156263-Thumbnail Image.png
Description
The US National Academy of Sciences and The Royal Society have recently released a detailed report on the causes and effects of global climate change.1 This report states that the Earth’s climate is rapidly changing due to human activity. Specifically, the burning of fossil fuels to satisfy the

The US National Academy of Sciences and The Royal Society have recently released a detailed report on the causes and effects of global climate change.1 This report states that the Earth’s climate is rapidly changing due to human activity. Specifically, the burning of fossil fuels to satisfy the energy demands of rising global population has resulted in unprecedented levels of greenhouse gasses in the atmosphere. These high levels of greenhouse gasses are serving to warm the surface of the planet resulting in extreme weather events. Thus, controlling the atmospheric CO2 level is motivating a great deal of scientific research in the area of carbon capture and storage (CCS).

Despite the great strides being made in the areas of alternative energy and solar-energy conversion, consumption of fossil fuels for energy generation will likely continue into the foreseeable future. This is primarily motivated by economic factors inasmuch as fossil fuels are a proven resource base with robust harvesting and distribution infrastructure.2 Presently, there are more than 8,000 stationary CO2 emission sources with an annual output of 13,466 megatons of CO2 per year.2 In this context, development of systems that ameliorate the output of greenhouse gasses from stationary CO2 sources, such as coal and natural gas burning power plants, is urgently needed.

In this document the utility of sulfur nucleophiles for CCS schemes is explored. The main thrust of the research has been utilizing electrogenerated sulfur nucleophiles to capture CO2, which can be electrochemically recovered from the resulting thiocarbonates while concomitantly regenerating the masked capture agent. Further, a temperature swing CO2 capture scheme that employs benzylthiolate as the CO2 sorbent is proposed and methods of manipulating the release temperature and kinetics were investigated. These reports represent the first application of organosulfur compounds toward CCS technologies and there are a number of newly reported compounds. The appendix deviates from the theme of the first four chapters to describe the functionalization of poly(2,6-dimethyl-1,4-phenylene oxide) with ferrocene moieties by the copper catalyzed azide-alkyne coupling reaction. This material is discussed within the context of anion recognition and sensing applications.
ContributorsRheinhardt, Joseph (Author) / Buttry, Daniel A. (Thesis advisor) / Angell, Charles A. (Committee member) / Chizmeshya, Andrew V. G. (Committee member) / Arizona State University (Publisher)
Created2018
136605-Thumbnail Image.png
Description
Inflammation is part of the body’s response to invading pathogens, injury, and a wide range of diseases. Although inflammation is paramount to maintain a healthy immune system, unregulated inflammation can aggravate chronic conditions or cause severe, acute pathologies. Pyroptosis, a caspase-1-dependent, pro-inflammatory cell death that results in the release of

Inflammation is part of the body’s response to invading pathogens, injury, and a wide range of diseases. Although inflammation is paramount to maintain a healthy immune system, unregulated inflammation can aggravate chronic conditions or cause severe, acute pathologies. Pyroptosis, a caspase-1-dependent, pro-inflammatory cell death that results in the release of IL-1β and IL-18, has been implicated in propagating an inflammatory response in the body. Pyroptosis has been shown to result from the activation of the NLRP3 inflammasome. Furthermore, multiple reports have demonstrated that intracellular potassium efflux and spleen tyrosine kinase (Syk) activity are both essential for facilitating the assembly of the NLRP3 inflammasome and proper processing and release of IL-1β and IL-18. The focus of this thesis was to determine the relationship between intracellular potassium efflux and Syk during key regulatory events in the activation of the NLRP3 inflammasome by identifying their effect on pro-inflammatory cytokine release, inflammasome assembly, mitochondrial reactive oxygen species (mROS) generation, and cell death. Both inhibiting potassium efflux from occurring and deactivating Syk significantly reduced the amount of pro-inflammatory cytokine released (70-100% reduction), the number of inflammasomes assembled (60-80% reduction), the amount of mROS generation, and the quantity of cell death (50-90% reduction). Moreover, it was discovered that potassium efflux was required for Syk activation, but Syk activation had no effect on potassium efflux. Their relationship proved to be unidirectional. This study provides the first demonstration of ion flux-dependent regulation of kinase activation in the NLRP3 inflammasome pathway and provides support for targeting ion regulation mechanisms and Syk kinase activity to manipulate macrophage-mediate inflammatory processes.
ContributorsRao, Mounica Yarlagadda (Author) / Meldrum, Deirdre R. (Thesis director) / Ankeny, Casey (Committee member) / Glenn, Honor (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
133675-Thumbnail Image.png
Description
An aim of fundamental immunology is quantifying the diversity of the T cell receptor (TCR) repertoire to elucidate the vast recognition by T cells for protection against pathogen and cancer. The utilization of DNA origami nanostructures engineered to capture single cell paired TCR mRNA sequences has transformed the financial and

An aim of fundamental immunology is quantifying the diversity of the T cell receptor (TCR) repertoire to elucidate the vast recognition by T cells for protection against pathogen and cancer. The utilization of DNA origami nanostructures engineered to capture single cell paired TCR mRNA sequences has transformed the financial and time requirements of repertoire establishment. To further support this protocol, confocal laser scanning microscopy was implemented following transfection to visualize the stability of the DNA origami within primary immune lymphocytes.
ContributorsReed, Abigail Elizabeth (Author) / Blattman, Joseph (Thesis director) / Glenn, Honor (Committee member) / Schoettle, Louis (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
128329-Thumbnail Image.png
Description

The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural

The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of penetrating microelectrode arrays are providing unprecedented access to the neurons of the central nervous system (CNS). These microelectrodes have active tip dimensions that are similar in size to neurons and because they penetrate the nervous system, they provide selective access to these cells (within a few microns). However, the very long-term viability of chronically implanted microelectrodes and the capability of recording the same spiking activity over long time periods still remain to be established and confirmed in human studies. Here we review the main responses to acute implantation of microelectrode arrays, and emphasize that it will become essential to control the neural tissue damage induced by these intracortical microelectrodes in order to achieve the high clinical potentials accompanying this technology.

ContributorsFernandez, Eduardo (Author) / Greger, Bradley (Author) / House, Paul A. (Author) / Aranda, Ignacio (Author) / Botella, Carlos (Author) / Albisua, Julio (Author) / Soto-Sanchez, Cristina (Author) / Alfaro, Arantxa (Author) / Normann, Richard A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-21
127956-Thumbnail Image.png
Description

In this study, a low-cycle fatigue experiment was conducted on printed wiring boards (PWB). The Weibull regression model and computational Bayesian analysis method were applied to analyze failure time data and to identify important factors that influence the PWB lifetime. The analysis shows that both shape parameter and scale parameter

In this study, a low-cycle fatigue experiment was conducted on printed wiring boards (PWB). The Weibull regression model and computational Bayesian analysis method were applied to analyze failure time data and to identify important factors that influence the PWB lifetime. The analysis shows that both shape parameter and scale parameter of Weibull distribution are affected by the supplier factor and preconditioning methods Based on the energy equivalence approach, a 6-cycle reflow precondition can be replaced by a 5-cycle IST precondition, thus the total testing time can be greatly reduced. This conclusion was validated by the likelihood ratio test of two datasets collected under two different preconditioning methods Therefore, the Weibull regression modeling approach is an effective approach for accounting for the variation of experimental setting in the PWB lifetime prediction.

ContributorsPan, Rong (Author) / Xu, Xinyue (Author) / Juarez, Joseph (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-12
127957-Thumbnail Image.png
Description

Studies about the data quality of National Bridge Inventory (NBI) reveal missing, erroneous, and logically conflicting data. Existing data quality programs lack a focus on detecting the logical inconsistencies within NBI and between NBI and external data sources. For example, within NBI, the structural condition ratings of some bridges improve

Studies about the data quality of National Bridge Inventory (NBI) reveal missing, erroneous, and logically conflicting data. Existing data quality programs lack a focus on detecting the logical inconsistencies within NBI and between NBI and external data sources. For example, within NBI, the structural condition ratings of some bridges improve over a period while having no improvement activity or maintenance funds recorded in relevant attributes documented in NBI. An example of logical inconsistencies between NBI and external data sources is that some bridges are not located within 100 meters of any roads extracted from Google Map. Manual detection of such logical errors is tedious and error-prone. This paper proposes a systematical “hypothesis testing” approach for automatically detecting logical inconsistencies within NBI and between NBI and external data sources. Using this framework, the authors detected logical inconsistencies in the NBI data of two sample states for revealing suspicious data items in NBI. The results showed that about 1% of bridges were not located within 100 meters of any actual roads, and few bridges showed improvements in the structural evaluation without any reported maintenance records.

ContributorsDin, Zia Ud (Author) / Tang, Pingbo (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20
128992-Thumbnail Image.png
Description

Background: Robotic devices have been utilized in gait rehabilitation but have only produced moderate results when compared to conventional physiotherapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking, which are not well understood but are

Background: Robotic devices have been utilized in gait rehabilitation but have only produced moderate results when compared to conventional physiotherapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking, which are not well understood but are systematically explored in this study, is needed to inform robotic interventions in gait therapy.

Methods: In this study we investigate mechanisms of inter-leg coordination by utilizing novel sensory perturbations created by real-time control of floor stiffness on a split-belt treadmill. We systematically alter the unilateral magnitude of the walking surface stiffness and the timing of these perturbations within the stance phase of the gait cycle, along with the level of body-weight support, while recording the kinematic and muscular response of the unperturbed leg. This provides new insight into the role of walking surface stiffness in inter-leg coordination during human walking. Both paired and unpaired unadjusted t-tests at the 95 % confidence level are used in the appropriate scenario to determine statistical significance of the results.

Results: We present results of increased hip, knee, and ankle flexion, as well as increased tibialis anterior and soleus activation, in the unperturbed leg of healthy subjects that is repeatable and scalable with walking surface stiffness. The observed response was not impacted by the level of body-weight support provided, which suggests that walking surface stiffness is a unique stimulus in gait. In addition, we show that the activation of the tibialis anterior and soleus muscles is altered by the timing of the perturbations within the gait cycle.

Conclusions: This paper characterizes the contralateral leg’s response to ipsilateral manipulations of the walking surface and establishes the importance of walking surface stiffness in inter-leg coordination during human walking.

ContributorsSkidmore, Jeffrey (Author) / Artemiadis, Panagiotis (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-03-22
127869-Thumbnail Image.png
Description

The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims

The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0-1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.

ContributorsLiu, Jiangtao (Author) / Kang, Jee Eun (Author) / Zhou, Xuesong (Author) / Pendyala, Ram (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-06-15
141462-Thumbnail Image.png
Description

Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases

Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases and by a panel of experts that treat ASD individuals. Only a few anti-epileptic drugs (AEDs) have undergone carefully controlled trials in ASD, but these trials examined outcomes other than seizures. Several lines of evidence point to valproate, lamotrigine, and levetiracetam as the most effective and tolerable AEDs for individuals with ASD. Limited evidence supports the use of traditional non-AED treatments, such as the ketogenic and modified Atkins diet, multiple subpial transections, immunomodulation, and neurofeedback treatments. Although specific treatments may be more appropriate for specific genetic and metabolic syndromes associated with ASD and seizures, there are few studies which have documented the effectiveness of treatments for seizures for specific syndromes. Limited evidence supports l-carnitine, multivitamins, and N-acetyl-l-cysteine in mitochondrial disease and dysfunction, folinic acid in cerebral folate abnormalities and early treatment with vigabatrin in tuberous sclerosis complex. Finally, there is limited evidence for a number of novel treatments, particularly magnesium with pyridoxine, omega-3 fatty acids, the gluten-free casein-free diet, and low-frequency repetitive transcranial magnetic simulation. Zinc and l-carnosine are potential novel treatments supported by basic research but not clinical studies. This review demonstrates the wide variety of treatments used to treat seizures in individuals with ASD as well as the striking lack of clinical trials performed to support the use of these treatments. Additional studies concerning these treatments for controlling seizures in individuals with ASD are warranted.

ContributorsFrye, Richard E. (Author) / Rossignol, Daniel (Author) / Casanova, Manuel F. (Author) / Brown, Gregory L. (Author) / Martin, Victoria (Author) / Edelson, Stephen (Author) / Coben, Robert (Author) / Lewine, Jeffrey (Author) / Slattery, John C. (Author) / Lau, Chrystal (Author) / Hardy, Paul (Author) / Fatemi, S. Hossein (Author) / Folsom, Timothy D. (Author) / MacFabe, Derrick (Author) / Adams, James (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-09-13
141466-Thumbnail Image.png
Description

There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing

There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms.

One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.

ContributorsFrye, Richard E. (Author) / Slattery, John (Author) / MacFabe, Derrick F. (Author) / Allen-Vercoe, Emma (Author) / Parker, William (Author) / Rodakis, John (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Bolte, Ellen (Author) / Kahler, Stephen (Author) / Jennings, Jana (Author) / James, Jill (Author) / Cerniglia, Carl E. (Author) / Midtvedt, Tore (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-07