Matching Items (7)
Filtering by

Clear all filters

129336-Thumbnail Image.png
Description

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures in recognition memory. Quantifying similarity, however, is challenging when everyday items are the desired stimulus set, particularly when researchers require several different pictures from the same category. In this article, we document a new multidimensional scaling database with similarity ratings for 240 categories, each containing color photographs of 16–17 exemplar objects. We collected similarity ratings using the spatial arrangement method. Reports include: the multidimensional scaling solutions for each category, up to five dimensions, stress and fit measures, coordinate locations for each stimulus, and two new classifications. For each picture, we categorized the item's prototypicality, indexed by its proximity to other items in the space. We also classified pairs of images along a continuum of similarity, by assessing the overall arrangement of each MDS space. These similarity ratings will be useful to any researcher that wishes to control the similarity of experimental stimuli according to an objective quantification of “sameness.”

ContributorsHout, Michael C. (Author) / Goldinger, Stephen (Author) / Brady, Kyle (Author) / Department of Psychology (Contributor)
Created2014-11-12
129212-Thumbnail Image.png
Description

Science has changed many of our dearly held and commonsensical (but incorrect) beliefs. For example, few still believe the world is flat, and few still believe the sun orbits the earth. Few still believe humans are unrelated to the rest of the animal kingdom, and soon few will believe human

Science has changed many of our dearly held and commonsensical (but incorrect) beliefs. For example, few still believe the world is flat, and few still believe the sun orbits the earth. Few still believe humans are unrelated to the rest of the animal kingdom, and soon few will believe human thinking is computer-like. Instead, as with all animals, our thoughts are based on bodily experiences, and our thoughts and behaviors are controlled by bodily and neural systems of perception, action, and emotion interacting with the physical and social environments. We are embodied; nothing more. Embodied cognition is about cognition formatted in sensorimotor experience, and sensorimotor systems make those thoughts dynamic. Even processes that seem abstract, such as language comprehension and goal understanding are embodied. Thus, embodied cognition is not limited to one type of thought or another: It is cognition.

ContributorsGlenberg, Arthur (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-01
129412-Thumbnail Image.png
Description

Recent studies (e.g., Kuhn and Tatler, 2005) have suggested that magic tricks can provide a powerful and compelling domain for the study of attention and perception. In particular, many stage illusions involve attentional misdirection, guiding the observer's gaze to a salient object or event, while another critical action, such as

Recent studies (e.g., Kuhn and Tatler, 2005) have suggested that magic tricks can provide a powerful and compelling domain for the study of attention and perception. In particular, many stage illusions involve attentional misdirection, guiding the observer's gaze to a salient object or event, while another critical action, such as sleight of hand, is taking place. Even if the critical action takes place in full view, people typically fail to see it due to inattentional blindness (IB). In an eye-tracking experiment, participants watched videos of a new magic trick, wherein a coin placed beneath a napkin disappears, reappearing under a different napkin. Appropriately deployed attention would allow participants to detect the “secret” event that underlies the illusion (a moving coin), as it happens in full view and is visible for approximately 550 ms. Nevertheless, we observed high rates of IB. Unlike prior research, eye-movements during the critical event showed different patterns for participants, depending upon whether they saw the moving coin. The results also showed that when participants watched several “practice” videos without any moving coin, they became far more likely to detect the coin in the critical trial. Taken together, the findings are consistent with perceptual load theory (Lavie and Tsal, 1994).

ContributorsBarnhart, Anthony S. (Author) / Goldinger, Stephen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-17
128191-Thumbnail Image.png
Description

Sensorimotor mechanisms can unify explanations at cognitive, social, and cultural levels. As an example, we review how anticipated motor effort is used by individuals and groups to judge distance: the greater the anticipated effort the greater the perceived distance. Anticipated motor effort can also be used to understand cultural differences.

Sensorimotor mechanisms can unify explanations at cognitive, social, and cultural levels. As an example, we review how anticipated motor effort is used by individuals and groups to judge distance: the greater the anticipated effort the greater the perceived distance. Anticipated motor effort can also be used to understand cultural differences. People with interdependent self- construals interact almost exclusively with in-group members, and hence there is little opportunity to tune their sensorimotor systems for interaction with out-group members. The result is that interactions with out-group members are expected to be difficult and out-group members are perceived as literally more distant. In two experiments we show (a) interdependent Americans, compared to independent Americans, see American confederates (in-group) as closer; (b) interdependent Arabs, compared to independent Arabs, perceive Arab confederates (in- group) as closer, whereas interdependent Americans perceive Arab confederates (out-group) as farther. These results demonstrate how the same embodied mechanism can seamlessly contribute to explanations at the cognitive, social, and cultural levels.

ContributorsSoliman, Tamer (Author) / Gibson, Alison (Author) / Glenberg, Arthur (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-29
128257-Thumbnail Image.png
Description

Soliman et al. (2013) set out to demonstrate how the bodily level of analysis can unify explanations in psychology. Our argument was that common sensorimotor mechanisms underlie many of the behavioral phenomena that are currently segregated as cognitive, social, or cultural. Toward that end, we re-characterized a cultural construct—self-construal along

Soliman et al. (2013) set out to demonstrate how the bodily level of analysis can unify explanations in psychology. Our argument was that common sensorimotor mechanisms underlie many of the behavioral phenomena that are currently segregated as cognitive, social, or cultural. Toward that end, we re-characterized a cultural construct—self-construal along the dimension of independence and interdependence (Markus and Kitayama, 1991)—as reflecting degree of interaction with ethnically diverse others.

ContributorsSoliman, Tamer (Author) / Glenberg, Arthur (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-04
128240-Thumbnail Image.png
Description

Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in

Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS.

ContributorsZarr, Noah (Author) / Ferguson, Ryan (Author) / Glenberg, Arthur (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-17
128602-Thumbnail Image.png
Description

At least since the late nineteenth century, researchers have sought an explanation for infantile amnesia (IA)—the lack of autobiographical memories dating from early childhood—and childhood amnesia (CA), faster forgetting of events up until the age of about seven. Evidence suggests that IA occurs across altricial species, and a number of

At least since the late nineteenth century, researchers have sought an explanation for infantile amnesia (IA)—the lack of autobiographical memories dating from early childhood—and childhood amnesia (CA), faster forgetting of events up until the age of about seven. Evidence suggests that IA occurs across altricial species, and a number of studies using animal models have converged on the hypothesis that maturation of the hippocampus is an important factor. But why does the hippocampus mature at one time and not another, and how does that maturation relate to memory? Our hypothesis is rooted in theories of embodied cognition, and it provides an explanation both for hippocampal development and the end of IA. Specifically, the onset of locomotion prompts the alignment of hippocampal place cells and grid cells to the environment, which in turn facilitates the ontogeny of long-term episodic memory and the end of IA. That is, because the animal can now reliably discriminate locations, location becomes a stable cue for memories. Furthermore, as the mode of human locomotion shifts from crawling to walking, there is an additional shift in the alignment of the hippocampus that marks the beginning of adult-like episodic memory and the end of CA. Finally, given a reduction in self-locomotion and exploration with aging, the hypothesis suggests a partial explanation for cognitive decline with aging.

ContributorsGlenberg, Arthur (Author) / Hayes, Justin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-25