Matching Items (13)
151981-Thumbnail Image.png
Description
Magicians are informal cognitive scientists who regularly test their hypotheses in the real world. As such, they can provide scientists with novel hypotheses for formal psychological research as well as a real-world context in which to study them. One domain where magic can directly inform science is the deployment of

Magicians are informal cognitive scientists who regularly test their hypotheses in the real world. As such, they can provide scientists with novel hypotheses for formal psychological research as well as a real-world context in which to study them. One domain where magic can directly inform science is the deployment of attention in time and across modalities. Both magicians and scientists have an incomplete understanding of how attention operates in time, rather than in space. However, magicians have highlighted a set of variables that can create moments of visual attentional suppression, which they call "off-beats," and these variables can speak to modern models of temporal attention. The current research examines two of these variables under conditions ranging from artificial laboratory tasks to the (almost) natural viewing of magic tricks. Across three experiments, I show that the detection of subtle dot probes in a noisy visual display and pieces of sleight of hand in magic tricks can be influenced by the seemingly irrelevant rhythmic qualities of auditory stimuli (cross-modal attentional entrainment) and processes of working memory updating (akin to the attentional blink).
ContributorsBarnhart, Anthony S (Author) / Goldinger, Stephen D. (Thesis advisor) / Glenberg, Arthur M. (Committee member) / Homa, Donald (Committee member) / Simons, Daniel J. (Committee member) / Arizona State University (Publisher)
Created2013
151930-Thumbnail Image.png
Description
Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning occurs. The goal of the present set of experiments is to determine if visual sequential information is learned in terms of abstract rules or stimulus-specific details. Two experiments test the extent to which interaction with the stimuli can influence the information that is encoded by the learner. The results of both experiments support the claim that stimulus and domain specific details directly shape what is learned, through a process of tuning the neuromuscular systems involved in the interaction between the learner and the materials.
ContributorsMarsh, Elizabeth R (Author) / Glenberg, Arthur M. (Thesis advisor) / Amazeen, Eric (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
151562-Thumbnail Image.png
Description
ABSTRACT This thesis proposes that a focus on the bodily level of analysis can unify explanation of behavior in cognitive, social, and cultural psychology. To examine this unifying proposal, a sensorimotor mechanism with reliable explanatory power in cognitive and social psychology was used to predict a novel pattern of behavior

ABSTRACT This thesis proposes that a focus on the bodily level of analysis can unify explanation of behavior in cognitive, social, and cultural psychology. To examine this unifying proposal, a sensorimotor mechanism with reliable explanatory power in cognitive and social psychology was used to predict a novel pattern of behavior in cultural context, and these predictions were examined in three experiments. Specifically, the finding that people judge objects that require more motor effort to interact with as farther in visual space was adapted to predict that people with interdependent self-construal(SC) , relative to those with independent SC, would visually perceive their cultural outgroups as farther relative to their cultural in-groups. Justifying this cultural extension of what is primarily a cognitive mechanism is the assumption that, unlike independents, Interdependents interact almost exclusively with in-group members, and hence there sensorimotor system is less tuned to cross-cultural interactions. Thus, interdependents, more so than independents, expect looming cross-cultural interactions to be effortful, which may inflate their judgment of distance to the out-groups. Two experiments confirmed these predictions: a) interdependent Americans, compared to independent Americans, perceived American confederates (in-group) as visually closer; b) interdependent Arabs, compared to independent Arabs, perceived Arab confederates (in-group) as closer; and c) interdependent Americans, relative to independent Americans, perceived Arab confederates (out-group) as farther. A third study directly established the proposed relation between motor effort and distance to human targets: American men perceived other American men as closer after an easy interaction than after a more difficult interaction. Together, these results demonstrate that one and the same sensorimotor mechanism can explain/predict homologous behavioral patterns across the subdisciplines of psychology.
ContributorsSoliman, Tamer (Author) / Glenberg, Arthur M. (Committee member) / Kwan, Sau (Committee member) / Cohen, Adam (Committee member) / Arizona State University (Publisher)
Created2013
150716-Thumbnail Image.png
Description
Current theoretical debate, crossing the bounds of memory theory and mental imagery, surrounds the role of eye movements in successful encoding and retrieval. Although the eyes have been shown to revisit previously-viewed locations during retrieval, the functional role of these saccades is not known. Understanding the potential role of eye

Current theoretical debate, crossing the bounds of memory theory and mental imagery, surrounds the role of eye movements in successful encoding and retrieval. Although the eyes have been shown to revisit previously-viewed locations during retrieval, the functional role of these saccades is not known. Understanding the potential role of eye movements may help address classic questions in recognition memory. Specifically, are episodic traces rich and detailed, characterized by a single strength-driven recognition process, or are they better described by two separate processes, one for vague information and one for the retrieval of detail? Three experiments are reported, in which participants encoded audio-visual information while completing controlled patterns of eye movements. By presenting information in four sources (i.e., voices), assessments of specific and partial source memory were measured at retrieval. Across experiments, participants' eye movements at test were manipulated. Experiment 1 allowed free viewing, Experiment 2 required externally-cued fixations to previously-relevant (or irrelevant) screen locations, and Experiment 3 required externally-cued new or familiar oculomotor patterns to multiple screen locations in succession. Although eye movements were spontaneously reinstated when gaze was unconstrained during retrieval (Experiment 1), externally-cueing participants to re-engage in fixations or oculomotor patterns from encoding (Experiments 2 and 3) did not enhance retrieval. Across all experiments, participants' memories were well-described by signal-detection models of memory. Source retrieval was characterized by a continuous process, with evidence that source retrieval occurred following item memory failures, and additional evidence that participants partially recollected source, in the absence of specific item retrieval. Pupillometry provided an unbiased metric by which to compute receiver operating characteristic (ROC) curves, which were consistently curvilinear (but linear in z-space), supporting signal-detection predictions over those from dual-process theories. Implications for theoretical views of memory representations are discussed.
ContributorsPapesh, Megan H (Author) / Goldinger, Stephen D (Thesis advisor) / Brewer, Gene A. (Committee member) / Reichle, Erik D. (Committee member) / Homa, Donald (Committee member) / Glenberg, Arthur M. (Committee member) / Arizona State University (Publisher)
Created2012
150444-Thumbnail Image.png
Description
The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on

The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on chromatic cues. The current study was designed to use grey, green, and red stimuli to successively limit the amount of information available to the dorsal stream pathway, while providing roughly equal information to the ventral system. Twenty-one participants identified shapes that were presented in grey, green, and red and were defined by dynamic occlusion. The shapes were then presented again in a static condition where the maximum occlusions were presented as before, but without motion. Results showed an interaction between the motion and static conditions in that when the speed of presentation increased, performance in the motion conditions became significantly less accurate than in the static conditions. The grey and green motion conditions crossed static performance at the same point, whereas the red motion condition crossed at a much slower speed. These data are consistent with a model of neural processing in which the main visual systems share information. Moreover, they support the notion that presenting stimuli in specific colors may help isolate perceptual pathways for scientific investigation. Given the potential for chromatic cues to target specific visual systems in the performance of dynamic object recognition, exploring these perceptual parameters may help our understanding of human visual processing.
ContributorsHolloway, Steven R. (Author) / McBeath, Michael K. (Thesis advisor) / Homa, Donald (Committee member) / Macknik, Stephen L. (Committee member) / Arizona State University (Publisher)
Created2011
153797-Thumbnail Image.png
Description
Previous research has indicated that certain breeds of dogs stay longer in shelters than others; however exactly how breed perception and identification influences potential adopters' decisions remains unclear. Current dog breed identification practices in animal shelters are often based upon information supplied by the relinquishing owner, or staff determination based

Previous research has indicated that certain breeds of dogs stay longer in shelters than others; however exactly how breed perception and identification influences potential adopters' decisions remains unclear. Current dog breed identification practices in animal shelters are often based upon information supplied by the relinquishing owner, or staff determination based on the dog's phenotype. However discrepancies have been found between breed identification as typically assessed by welfare agencies and the outcome of DNA analysis. In Study 1, the perceived behavioral and adoptability characteristics of a pit-bull-type dog were compared with those of a Labrador Retriever and Border Collie. How the addition of a human handler influenced those perceptions was also assessed. In Study 2, lengths of stay and perceived attractiveness of dogs that were labeled as pit bull breeds to dogs that were phenotypically similar but were labeled as another breed at an animal shelter were compared. The latter dogs were called "lookalikes." In Study 3, perceived attractiveness in video recordings of pit-bull-type dogs and lookalikes with and without breed labels were compared. Lastly, data from an animal shelter that ceased applying breed labeling on kennels was analyzed, and lengths of stay and outcomes for all dog breeds, including pit bulls, before and after the change in labeling practice were compared. In total, these findings suggest that breed labeling influences potential adopters' perceptions and decision-making. Given the inherent complexity of breed assignment based on morphology coupled with negative breed perceptions, removing breed labels is a relatively low-cost strategy that will likely improve outcomes for dogs in animal shelters.
ContributorsGunter, Lisa (Author) / Wynne, Clive D.L. (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / McBeath, Michael K. (Committee member) / Arizona State University (Publisher)
Created2015
153952-Thumbnail Image.png
Description
This study examines the effects of providing persuasive writing and reading comprehension strategy training on source-based essay writing. Strategy training was administered through the use of the Writing Pal and the Interactive Strategy Trainer for Active Reading and Thinking (iSTART). The impact of both individual (writing or reading) and blended

This study examines the effects of providing persuasive writing and reading comprehension strategy training on source-based essay writing. Strategy training was administered through the use of the Writing Pal and the Interactive Strategy Trainer for Active Reading and Thinking (iSTART). The impact of both individual (writing or reading) and blended strategy training on source-based writing was investigated. A total of 261 participants completed the study; after removing incomplete and second language participants the source-based writing and system performance was assessed for 175 participants (n no instruction = 48, n iSTART =41, n Writing Pal =41, n blended =45).

Results indicated that participants who received blended strategy training produced higher quality source-based essays than participants who received only reading comprehension, writing strategy training, or no training. Furthermore, participants who received only reading comprehension or writing strategy training did not produce higher quality source-based essays than participants in the no-training control group. Time on task was investigated as a potential explanation for the results. Neither total time on task nor practice time were predictive of group differences on source-based essay scores. Analyses further suggested that the impact of strategy training does not differ as a function of prior abilities; however, training does seem to impact the relation between prior abilities and source-based essay scores. Specifically, prior writing ability was unrelated to performance for those who received writing training (i.e., Writing Pal and blended conditions), and prior reading ability was unrelated to performance for those received the full dosage of iSTART training. Overall, the findings suggest that when taught in conjunction with one another, reading comprehension and writing strategy training transfers to source-based writing, providing a positive impact on score. Potential changes to the Writing Pal and iSTART to more closely align training with source-based writing are discussed as methods of further increasing the impact of training on source-based writing.
ContributorsWeston Jennifer L (Author) / McNamara, Danielle S. (Thesis advisor) / Connor, Carol M (Committee member) / Glenberg, Arthur M. (Committee member) / Graham, Steve (Committee member) / Arizona State University (Publisher)
Created2015
155089-Thumbnail Image.png
Description
For many years now, researchers have documented evidence of fractal scaling in psychological time series. Explanations of fractal scaling have come from many sources but those that have gained the most traction in the literature are theories that suggest fractal scaling originates from the interactions among the multiple scales

For many years now, researchers have documented evidence of fractal scaling in psychological time series. Explanations of fractal scaling have come from many sources but those that have gained the most traction in the literature are theories that suggest fractal scaling originates from the interactions among the multiple scales that make up behavior. Those theories, originating in the study of dynamical systems, suffer from the limitation that fractal analysis reveals only indirect evidence of multiscale interactions. Multiscale interactions must be demonstrated directly because there are many means to generate fractal properties. In two experiments, participants performed a pursuit tracking task while I recorded multiple behavioral and physiological time series. A new analytical technique, multiscale lagged regression, was introduced to capture how those many psychological time series coordinate across multiple scales and time. The results were surprising in that coordination among psychological time series tends to be oscillatory in nature, even when the series are not oscillatory themselves. Those and other results demonstrate the existence of multiscale interactions in psychological systems.
ContributorsLikens, Aaron D (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric L (Committee member) / Cooke, Nancy L (Committee member) / Glenberg, Arthur M. (Committee member) / Arizona State University (Publisher)
Created2016
149433-Thumbnail Image.png
Description
Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as

Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as important for aerobic efficiency. However, performance can be overly attracted to stable relative phases, preventing the performance or learning of more complex patterns. Little research exists on relative phase dynamics in motor-respiratory coordination, although those observations underscore the importance of learning more. In contrast, there is an extensive literature on relative phase dynamics in interlimb coordination. The accuracy and stability of different relative phases, transitions between patterns, and asymmetries between components are well understood. Theoretically, motor-respiratory and interlimb coordination may share dynamical properties that operate in their different physiological substrates. An existing model of relative phase dynamics in interlimb coordination, the Haken, Kelso, Bunz model, was used to gain an understanding of relative phase dynamics in the less-researched motor-respiratory coordination. Experiments 1 and 2 were designed to examine the interaction of frequency asymmetries between movement and breathing with relative phase and frequency, respectively. In Experiment 3, relative phase stability and transitions in motor-respiratory coordination were explored. Perceptual constraints on differences in stability were investigated in Experiment 4. Across experiments, contributions relevant to questions of coordinative variability were made using a dynamical method called cross recurrence quantification analysis. Results showed much consistency with predictions from an asymmetric extension of the Haken, Kelso, Bunz model and theoretical interpretation in the interlimb coordination literature, including phase wandering, intermittency, and an interdependence of perception and action. There were, however, notable exceptions that indicated stability can decrease with more natural frequency asymmetries and the connection of cross recurrence measures to categories of variability needs further clarification. The complex relative phase dynamics displayed in this study suggest that movement and breathing are softly-assembled by functional constraints and indicate that motor-respiratory coordination is a self-organized system.
ContributorsHessler, Eric Edward (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric L (Committee member) / Glenberg, Arthur M. (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2010
161279-Thumbnail Image.png
Description
I recently established the gleam-glum effect confirming in both English and Mandarin that words with the /i/ vowel-sound (like “gleam”) are rated more emotionally positive than matched words with the /ʌ/ vowel-sound (like “glum”). Here I confirm that these vowel sounds also influence the semantic perception of monosyllabic pseudo-words.

I recently established the gleam-glum effect confirming in both English and Mandarin that words with the /i/ vowel-sound (like “gleam”) are rated more emotionally positive than matched words with the /ʌ/ vowel-sound (like “glum”). Here I confirm that these vowel sounds also influence the semantic perception of monosyllabic pseudo-words. In Experiment 1, 100 participants rated 50 individual /i/ monosyllabic pseudo-words (like “zeech”) as significantly more positive than 50 matched /ʌ/ pseudo-words (like “zuch”), replicating my previous findings with real words. Experiment 2 assessed the gleam-glum effect on pseudo-words using a forced-choice task. Participants (n = 148) were presented with the 50 pairs of pseudo-words used in Experiment 1 and tasked to guess the most likely meaning of each pseudo-word by matching them with one of two meaning words that were either extremely positive or extremely negative in affective valence (Warriner et al., 2013). I found a remarkably robust effect in which every one of the 50 pseudo-word pairs was on average more likely to have the /i/ word matched with the positive meaning word and /ʌ/ word with the negative one (exact binomial test, p < .001, z = 7.94). The findings confirm that the gleam-glum effect facilitates bootstrapping meaning of words from their pronunciations. These findings coupled with previous real word findings (Yu et al., in press), showing not only that the effect encompasses the entire English lexicon but can also be explained with an embodied facial musculature mechanism, is consistent with the idea that sound symbolism may shape vocabulary use of a language over time by influencing semantic perception.
ContributorsYu, Shin-Phing (Author) / McBeath, Michael K. (Thesis advisor) / Glenberg, Arthur M. (Thesis advisor, Committee member) / Stone, Gregory (Committee member) / Benitez, Viridiana (Committee member) / Arizona State University (Publisher)
Created2021