Matching Items (45)
150168-Thumbnail Image.png
Description
Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation

Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation to grow a fungus that, in turn, serves as food for the colony. Fungal growth rates and colony worker production are interdependent, regulated by nutritional and behavioral feedbacks. Fungal growth and quality are directly affected by worker foraging decisions, while worker production is, in turn, dependent on the amount and condition of the fungus. In this dissertation, I first characterized the growth relationship between the workers and the fungus of the desert leafcutter ant Acromyrmex versicolor during early stages of colony development, from colony foundation by groups of queens through the beginnings of exponential growth. I found that this relationship undergoes a period of slow growth and instability when workers first emerge, and then becomes allometrically positive. I then evaluated how mass and element ratios of resources collected by the ants are translated into fungus and worker population growth, and refuse, finding that colony digestive efficiency is comparable to digestive efficiencies of other herbivorous insects and ruminants. To test how colonies behaviorally respond to perturbations of the fungus garden, I quantified activity levels and task performance of workers in colonies with either supplemented or diminished fungus gardens, and found that colonies adjusted activity and task allocation in response to the fungus garden size. Finally, to identify possible forms of nutrient limitation, I measured how colony performance was affected by changes in the relative amounts of carbohydrates, protein, and phosphorus available in the resources used to grow the fungus garden. From this experiment, I concluded that colony growth is primarily carbohydrate-limited.
ContributorsClark, Rebecca, 1981- (Author) / Fewell, Jennifer H (Thesis advisor) / Mueller, Ulrich (Committee member) / Liebig, Juergen (Committee member) / Elser, James (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2011
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151748-Thumbnail Image.png
Description
For over a century, researchers have been investigating collective cognition, in which a group of individuals together process information and act as a single cognitive unit. However, I still know little about circumstances under which groups achieve better (or worse) decisions than individuals. My dissertation research directly addressed this longstanding

For over a century, researchers have been investigating collective cognition, in which a group of individuals together process information and act as a single cognitive unit. However, I still know little about circumstances under which groups achieve better (or worse) decisions than individuals. My dissertation research directly addressed this longstanding question, using the house-hunting ant Temnothorax rugatulus as a model system. Here I applied concepts and methods developed in psychology not only to individuals but also to colonies in order to investigate differences of their cognitive abilities. This approach is inspired by the superorganism concept, which sees a tightly integrated insect society as the analog of a single organism. I combined experimental manipulations and models to elucidate the emergent processes of collective cognition. My studies show that groups can achieve superior cognition by sharing the burden of option assessment among members and by integrating information from members using positive feedback. However, the same positive feedback can lock the group into a suboptimal choice in certain circumstances. Although ants are obligately social, my results show that they can be isolated and individually tested on cognitive tasks. In the future, this novel approach will help the field of animal behavior move towards better understanding of collective cognition.
ContributorsSasaki, Takao (Author) / Pratt, Stephen C (Thesis advisor) / Amazeen, Polemnia (Committee member) / Liebig, Jürgen (Committee member) / Janssen, Marco (Committee member) / Fewell, Jennifer (Committee member) / Hölldobler, Bert (Committee member) / Arizona State University (Publisher)
Created2013
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
150622-Thumbnail Image.png
Description
A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social behaviors are built, it also becomes possible to better evaluate hypothetical explanations regarding the mechanisms behind the evolution of insect eusociality, such as the argument that the reproductive regulatory infrastructure of solitary ancestors was co-opted and modified to produce distinct castes. This dissertation provides new information regarding the internal factors that could underlie the division of labor observed in both founding queens and workers of Pogonomyrmex californicus ants, and shows that changes in task performance are correlated with differences in reproductive physiology in both castes. In queens and workers, foraging behavior is linked to elevated levels of the reproductively-associated juvenile hormone (JH), and, in workers, this behavioral change is accompanied by depressed levels of ecdysteroid hormones. In both castes, the transition to foraging is also associated with reduced ovarian activity. Further investigation shows that queens remain behaviorally plastic, even after worker emergence, but the association between JH and behavioral bias remains the same, suggesting that this hormone is an important component of behavioral development in these ants. In addition to these reproductive factors, treatment with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) also causes queens to become biased towards foraging, suggesting an additional sensory component that could play an important role in division of labor. Overall, this work provides novel identification of the possible regulators behind ant division of labor, and suggests how reproductive physiology could play an important role in the evolution and regulation of non-reproductive social behaviors.
ContributorsDolezal, Adam G (Author) / Amdam, Gro V (Thesis advisor) / Brent, Colin S. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Liebig, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
136060-Thumbnail Image.png
Description
ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of

ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of these odorants is made possible by the chemoreceptive functions of sensilla basiconica and sensilla trichoid which exist on the antennal structure. The present study consists of both a morphological analysis and electrophysiological experiment concerning sensilla basiconica. It attempts to characterize the function of neurons present in sensilla basiconica through single sensillum recordings and contributes to existing literature by determining if a social insect, such as the dampwood termite, is able to perceive a wide spectrum of odorants despite having significantly fewer olfactory receptors than most other social insect species. Results indicated that sensilla basiconica presence significantly out-paced that of sensilla trichoid and sensilla chaetica combined, on all flagellomeres. Analysis demonstrated significant responses to all general odorants and several cuticular hydrocarbons. Combined with the knowledge of fewer olfactory receptors present in this species and their lifestyle, results may indicate a positive association between the the social complexity of an insect's lifestyle and the number of ORs the individuals within that colony possess.
ContributorsMcGlone, Taylor (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
136142-Thumbnail Image.png
Description
Self-maintenance behaviors, like preening in birds, can have important effects on fitness in many animals. Birds produce preen oil, which is a mixture of volatile and non-volatile compounds, that is spread through their feathers during grooming and influences feather integrity, waterproofing, and coloration. As urban areas grow and present conditions

Self-maintenance behaviors, like preening in birds, can have important effects on fitness in many animals. Birds produce preen oil, which is a mixture of volatile and non-volatile compounds, that is spread through their feathers during grooming and influences feather integrity, waterproofing, and coloration. As urban areas grow and present conditions that may demand increased feather self-maintenance (e.g. due to soiling, pollution, elevated UV exposure due to natural habitat alterations), it is important to examine how preening and preen oil may be affected by this process. I assessed variation in preen oil composition in house finches (Haemorhous mexicanus) as a function of sex, urbanization, and plumage hue, a sexually selected indicator of male quality. Preen oil samples from birds captured at urban and rural sites were analyzed using gas chromatography-mass spectrometry. We detected 18 major peaks, which we tentatively identified as esters, and found that, although there were no sex or urban-rural differences in preen oil constituents, there was a significant interactive effect of sex and urbanization, with rural females and urban males having higher amounts of some components. This suggests that factors that vary with sex or urbanization, such as the timing of seasonal cycles, are affecting preen oil composition. There were no significant relationships between coloration and preen oil composition, suggesting that preen oil composition does not vary with male quality.
ContributorsBrooks, Ellen Elizabeth (Author) / McGraw, Kevin (Thesis director) / Liebig, Juergen (Committee member) / Weaver, Melinda (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136686-Thumbnail Image.png
Description
Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear

Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear recruitment pattern where a leading ant uses a short-ranged pheromone to direct a following ant to a target location (in tandem).The observed phenomenon of reverse tandem running (RTR), where a follower is lead from a target back to the home nest, has not been as extensively studied as forward tandem running and transportation recruitment activities. This study seeks to explain a potential reason for the presence of the RTR behavior; more specifically, the study explores the idea that reverse tandem run followers are being shown a specific route to the home nest by a highly experienced and efficient leading ant. Ten colonies had migrations induced experimentally in order to generate some reverse tandem running activity. Once an RTR has been observed, the follower and leader were studied for behavior and their pathways were analyzed. It was seen that while RTR paths were quite efficient (1.4x a straight line distance), followers did not experience a statistically significant improvement in their pathways between the home and target nests (based on total distance traveled) when compared to similar non-RTR ants. Further, RTR leading ants were no more efficient than other non-RTR ants. It was observed that some followers began recruiting after completion of an RTR, but the number than changed their behavior was not significant. Thus, the results of this experiment cannot conclusively show that RTR followers are utilizing reverse tandem runs to improve their routes between the home and target nests.
ContributorsColling, Blake David (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / Sasaki, Takao (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
136790-Thumbnail Image.png
Description
Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons,

Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons, however it is yet to be seen if Camponotus floridanus can discriminate between linear hydrocarbons of similar length. Individual specimens were conditioned in three different ways: 5 conditioning with high concentration of sugar water (1;1 ratio), 1 conditioning with high concentration of sugar water, and 5 conditioning with low concentration of sugar water (1;4). Two linear hydrocarbons were use, C23 and C24, with C23 always being the conditioned stimulus. Specimens who were conditioned 5 times with high concentration of sugar water were the only group to show a significant response to the conditioned stimulus with a p-value of .008 and exhibited discrimination behavior 46% of the time. When compared 5 conditioning with high concentration to the other two testing conditioning groups, 1 conditioning with high concentration produced an insignificant p-value of .13 was obtained whereas when comparing it with 5 conditioning low concentration of sugar a significant p-value of .0132 was obtained. This indiciates that Camponotus floridanus are capable of discrimination however must be conditioned with high concentration of sugar water, while number of conditioning is insignificant.
ContributorsDamari, Ben Aviv (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136797-Thumbnail Image.png
Description
Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system

Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system workers and queens are determined by their genotype (i.e., workers develop from interlineage crosses, queens from intralineage crosses). As such, J1 and J2 lineages are dependent on each other in order for colonies to produce both workers and reproductive queens. Given their genetic isolation and interdependence, we hypothesized that the CHCs of alate males and queens are affected by lineage, and that differences in the CHC profile are used for mate recognition. We tested these hypotheses by analyzing the lineage distributions of actively mating pairs (n=65), and compared them with the overall distribution of male and female sexuals (n=180). We additionally analyzed the five most abundant CHC compounds for 20 of the actively mating P. barbatus alate male and queen pairs to determine how variable the two lineages are between each sex. We found that mating pair distributions did not significantly differ from those expected under a random mating system (�2= 1.4349, P= 0.6973), however, CHC profiles did differ between J1 and J2 lineages and sexes for the five most abundant CHC compounds. Our results show that random mating is taking place in this population, however given the differences observed in CHC profiles, mate recognition could be taking place.
ContributorsTula Del Moral Testai, Pedro Rafael (Co-author) / Cash, Elizabeth (Co-author) / Gadau, Juergen (Thesis director) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05