Matching Items (286)
Filtering by

Clear all filters

148495-Thumbnail Image.png
Description

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that near-field radiation generates greater heat flux that conventional radiation governed by Planck’s law with maximum for blackbodies. Working with a phase shift material such as VO2 enables a switch-like effect to occur where the total amount of heat flux fluctuates as VO2 transitions from a metal to an insulator. In this paper, the theoretical heat flux and near-field radiation effect are modeled for a set-up of VO2 and SiO2 layers separated by different vacuum gaps. In addition, a physical experimental set-up is validated for future near-field radiation experiments.

ContributorsSluder, Nicole (Author) / Wang, Liping (Thesis director) / Wang, Ropert (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149451-Thumbnail Image.png
Description
Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the

Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the euphotic zone, triggering a surge in primary productivity in the form of a spring phytoplankton bloom. Although the hydrographic trends of this "boom and bust" cycle have been well studied for decades, community composition and its seasonal and annual variability remains an integral subject of research. It is hypothesized here that proportions of different phytoplankton and protistan taxa vary dramatically between seasons and years, and that picoplankton represent an important component of this community and contributor to carbon in the surface ocean. Monthly samples from the Bermuda Atlantic Time-series Study (BATS) site were analyzed by epifluorescence microscopy, which permits classification by morphology, size, and trophic type. Epifluorescence counts were supplemented with flow cytometric quantification of Synechococcus, Prochlorococcus, and autotrophic pico- and nanoeukaryotes. Results from this study indicate Synechococcus and Prochlorococcus, prymnesiophytes, and hetero- and mixotrophic nano- and dinoflagellates were the major players in the BATS region plankton community. Ciliates, cryptophytes, diatoms, unidentified phototrophs, and other taxa represented rarer groups. Both flow cytometry and epifluorescence microscopy revealed Synechococcus to be most prevalent during the spring bloom. Prymnesiophytes likewise displayed distinct seasonality, with the highest concentrations again being noted during the bloom. Heterotrophic nano- and dinoflagellates, however, were most common in fall and winter. Mixotrophic dinoflagellates, while less abundant than their heterotrophic counterparts, displayed similar seasonality. A key finding of this study was the interannual variability revealed between the two years. While most taxa were more abundant in the first year, prymnesiophytes experienced much greater abundance in the second year bloom. Analyses of integrated carbon revealed further stark contrasts between the two years, both in terms of total carbon and the contributions of different groups. Total integrated carbon varied widely in the first study year but displayed less fluctuation after June 2009, and values were noticeably reduced in the second year.
ContributorsHansen, Amy (Author) / Neuer, Susanne (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2010
135929-Thumbnail Image.png
Description
With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the

With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the technology and information available today, the amount of biomass that would need to be produced is not economically feasible. In this work, I examined a possible factor impacting the growth of a model cyanobacterium, Synechocystis sp. PCC6803, which is heterotrophic bacteria communities accompanying the cyanobacteria. I experimented with three variables: the type of heterotrophic bacteria strain, the initial concentration of heterotrophic bacteria, and the addition of a carbon source (glucose) to the culture. With experimental information, I identified if given conditions would increase Synechocystis growth and thus increase the yield of biomass. I found that under non-limiting growth conditions, heterotrophic bacteria do not significantly affect the growth of Synechocystis or the corresponding biomass yield. The initial concentration of heterotrophic bacteria and the added glucose also did not affect the growth of Synechocystis. I did see some nutrient recycling from the heterotrophic bacteria as the phosphate levels in the growth medium were depleted, which was apparent from prolonged growth phase and higher levels of reactive phosphate in the media.
ContributorsCahill, Brendan Robert (Author) / Rittmann, Bruce (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / W. P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
130326-Thumbnail Image.png
Description

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH[subscript 3]-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

Created2016-08-11
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
133056-Thumbnail Image.png
Description
While non-invasive breast cancer treatments may be considered less costly in the short-term, over the course of a lifetime, a more aggressive treatment can be overall less costly, especially with recurrence cases; however, these more aggressive treatments are not necessarily covered by insurance and are difficult to discuss in the

While non-invasive breast cancer treatments may be considered less costly in the short-term, over the course of a lifetime, a more aggressive treatment can be overall less costly, especially with recurrence cases; however, these more aggressive treatments are not necessarily covered by insurance and are difficult to discuss in the short amount of time in physician consultations. This analysis studied data from 982 women diagnosed with breast cancer over a five-year period to evaluate monetary costs associated with treatment options and incorporated five in-depth interviews to understand experiences and non-monetary costs. Data showed the most expensive option was a unilateral mastectomy with radiation therapy and the least costly option was breast conserving surgery. Interviews determined each woman evaluated the monetary costs with each treatment but most heavily focused on personal values, biases and recommended opinions when deciding on a treatment. The use of prompt sheets before physician appointments and consultations, along with the addition of financial counselor meeting with each patient can improve patient satisfaction and alleviate stress by simplifying a woman's choice in deciding a treatment. In addition, increased insurance coverage to include every treatment chosen by women (rather than on a case-by-case basis), specifically contralateral prophylactic mastectomy and additional screening options, could decrease long term costs \u2014 both monetarily and in quality of life for patients.
ContributorsOsumi, Alana (Author) / LaRosa, Julia (Thesis director) / Sivanantham, Jai (Committee member) / Barrett, The Honors College (Contributor) / W.P. Carey School of Business (Contributor)
Created2018-12
133387-Thumbnail Image.png
Description
In 2016, in the United States alone, the cosmetics industry made an estimated 62.46 billion dollars in revenue (Revenue of the Cosmetic Industry in the U.S. 2002-2016 | Forecast). With a consistent increase in sales in the last several years, the industry has reached continued success even during times of

In 2016, in the United States alone, the cosmetics industry made an estimated 62.46 billion dollars in revenue (Revenue of the Cosmetic Industry in the U.S. 2002-2016 | Forecast). With a consistent increase in sales in the last several years, the industry has reached continued success even during times of hardship, such as the Great Recession of 2008. The use of Corporate Social Responsibility (CSR), external campaigns, and thoughtful packaging and ingredients resonates with targeted consumers. This has served as an effective strategy to maintain growth in the industry. Cosmetic companies promote their brand image using these sustainability tactics, but there seems to be a lack of transparency in this unregulated industry. The purpose of this thesis is to determine if the cosmetics industry is a good steward of the sustainability movement. Important terms and concepts relating to the industry will be discussed, then an analysis of sustainability focused cosmetic brands will be provided, which highlights the extent to which these brands engage in activities that promote sustainability. This is followed by an application of findings to a company that could benefit from using such practices. Overall, the analysis of the different brands proved to be shocking and disappointing. This is due to the sheer amount that scored very poorly based on the sustainability criteria developed. The cosmetics industry is too inconsistent and too unregulated to truly act as a good steward for sustainability. Though some companies in the industry succeed, these accomplishments are not consistent across all cosmetic companies. Hence, the cosmetics industry as a good steward for sustainability can only be as strong as its weakest link.
ContributorsMamus, Sydney Wasescha (Author) / Ostrom, Amy (Thesis director) / Kristofferson, Kirk (Committee member) / Department of Marketing (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133391-Thumbnail Image.png
Description
This report was commissioned to provide an analysis and evaluation of consumer perceptions and branding as it relates to the political and social climate in America. To be able to do this, the paper analyzes shifts in the external environment as well as researching case studies and online consumer perception

This report was commissioned to provide an analysis and evaluation of consumer perceptions and branding as it relates to the political and social climate in America. To be able to do this, the paper analyzes shifts in the external environment as well as researching case studies and online consumer perception surveys. Overall, this paper aims to examine the distributed survey and attempt to correlate and identify how branding, consumer perceptions, and social and political issues all can work and affect one another. Through the administration of this survey, we were able to formulate a conclusion that points towards the importance of brands actively adhering to changing consumer preferences, ideals, and expectations.
ContributorsClark, Sydney (Co-author) / Loera, Carolina (Co-author) / Montoya, Detra (Thesis director) / Samper, Adriana (Committee member) / W.P. Carey School of Business (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133403-Thumbnail Image.png
Description
The use of generalized linear models in loss reserving is not new; many statistical models have been developed to fit the loss data gathered by various insurance companies. The most popular models belong to what Glen Barnett and Ben Zehnwirth in "Best Estimates for Reserves" call the "extended link ratio

The use of generalized linear models in loss reserving is not new; many statistical models have been developed to fit the loss data gathered by various insurance companies. The most popular models belong to what Glen Barnett and Ben Zehnwirth in "Best Estimates for Reserves" call the "extended link ratio family (ELRF)," as they are developed from the chain ladder algorithm used by actuaries to estimate unpaid claims. Although these models are intuitive and easy to implement, they are nevertheless flawed because many of the assumptions behind the models do not hold true when fitted with real-world data. Even more problematically, the ELRF cannot account for environmental changes like inflation which are often observed in the status quo. Barnett and Zehnwirth conclude that a new set of models that contain parameters for not only accident year and development period trends but also payment year trends would be a more accurate predictor of loss development. This research applies the paper's ideas to data gathered by Company XYZ. The data was fitted with an adapted version of Barnett and Zehnwirth's new model in R, and a trend selection algorithm was developed to accompany the regression code. The final forecasts were compared to Company XYZ's booked reserves to evaluate the predictive power of the model.
ContributorsZhang, Zhihan Jennifer (Author) / Milovanovic, Jelena (Thesis director) / Tomita, Melissa (Committee member) / Zicarelli, John (Committee member) / W.P. Carey School of Business (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05