Matching Items (62)
133531-Thumbnail Image.png
Description
Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of this study was to evaluate the effectiveness of an algorithm developed to predict regions of high-binding on proteins as it applies to determining the regions of interaction between binding partners. This approach was applied to tumor necrosis factor alpha (TNFα), its receptor TNFR2, programmed cell death protein-1 (PD-1), and one of its ligand PD-L1. The algorithms applied accurately predicted the binding region between TNFα and TNFR2 in which the interacting residues are sequential on TNFα, however failed to predict discontinuous regions of binding as accurately. The interface of PD-1 and PD-L1 contained continuous residues interacting with each other, however this region was predicted to bind weaker than the regions on the external portions of the molecules. Limitations of this approach include use of a linear search window (resulting in inability to predict discontinuous binding residues), and the use of proteins with unnaturally exposed regions, in the case of PD-1 and PD-L1 (resulting in observed interactions which would not occur normally). However, this method was overall very effective in utilizing the available information to make accurate predictions. The use of the microarray to obtain binding information and a computer algorithm to analyze is a versatile tool capable of being adapted to refine accuracy.
ContributorsBrooks, Meilia Catherine (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Ghirlanda, Giovanna (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133089-Thumbnail Image.png
Description
Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve

Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve CVN's glycan-binding affinity by conjugating a boronic acid functional group to the N-terminus via N-terminal specific reductive alkylation by way of a benzaldehyde handle. However, large discrepancies were observed when attempting to confirm a successful conjugation, and further work is necessary to identify the causes and solutions for these issues.
ContributorsDiep, Tristan H (Author) / Ghirlanda, Giovanna (Thesis director) / Redding, Kevin (Committee member) / Mills, Jeremy (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135059-Thumbnail Image.png
Description
Circulating tumor DNA analysis has several potential applications in cancer diagnostics. However, results in literature vary considerably, often due to different blood collection methods and protocols. Several new products to address pre-analytical variables of cfDNA processing have recently become available, and little is understood about their effects on DNA quality

Circulating tumor DNA analysis has several potential applications in cancer diagnostics. However, results in literature vary considerably, often due to different blood collection methods and protocols. Several new products to address pre-analytical variables of cfDNA processing have recently become available, and little is understood about their effects on DNA quality and downstream applications. We evaluated the effects of blood collection protocols and DNA extraction kits on cfDNA yield, quality, and fragment size using droplet-digital PCR (ddPCR) and targeted deep sequencing. To quantify cfDNA yield and size distribution, we developed a multiplexed ddPCR assay with FAM-labeled short amplicons and TET-labeled long amplicons targeting housekeeping genes. After assay validation, we compared the performance of several commercially-available cfDNA extraction kits using control plasma samples and different blood collection protocols using paired plasma samples from healthy volunteers. To assess whether cell-stabilizing preservative in Streck tubes may induce low-abundance noise in cfDNA, we performed molecularly-tagged targeted deep sequencing and developed an informatics approach for enumeration and variant calling from uniquely tagged DNA fragments. We found a significant difference between extraction methods but no significant difference across blood collection protocols in cfDNA yield or size distribution. Sequencing results showed no significant evidence of preservative-induced cfDNA damage across tested blood collection protocols. In summary, the multiplexed ddPCR assay enabled quantitative assessment of cfDNA extraction methods and blood collection protocols, and allowed for normalization of input to create reproducible sequencing libraries. Our results suggest that plasma samples processed up to 72 hours following venipuncture in Streck Cell-free DNA tubes may be used for downstream sequencing of circulating tumor DNA in patients with cancer.
ContributorsMarkus, Havell (Author) / Murtaza, Muhammed (Thesis director) / Ghirlanda, Giovanna (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153757-Thumbnail Image.png
Description
As sunlight is an ideal source of energy on a global scale, there are several approaches being developed to harvest it and convert it to a form that can be used. One of these is though mimicking the processes in natural photosynthesis. Artificial photosynthetic systems include dye sensitized solar cells

As sunlight is an ideal source of energy on a global scale, there are several approaches being developed to harvest it and convert it to a form that can be used. One of these is though mimicking the processes in natural photosynthesis. Artificial photosynthetic systems include dye sensitized solar cells for the conversion of sunlight to electricity, and photoelectrosynthetic cells which use sunlight to drive water oxidation and hydrogen production to convert sunlight to energy stored in fuel. Both of these approaches include the process of the conversion of light energy into chemical potential in the form of a charge-separated state via molecular compounds. Porphyrins are commonly used as sensitizers as they have well suited properties for these applications. A high potential porphyrin with four nitrile groups at the beta positions, a β-cyanoporphyrin (CyP), was investigated and found to be an excellent electron acceptor, as well as have the necessary properties to be used as a sensitizer for photoelectrosynthetic cells for water oxidation. A new synthetic method was developed which allowed for the CyP to be used in a number of studies in artificial photosynthetic systems. This dissertation reports the theories behind, and the results of four studies utilizing a CyP for the first time; as a sensitizer in a DSSC for an investigation of its use in light driven water oxidation photoelectrosynthetic cells, as an electron acceptor in a proton coupled electron transfer system, in a carotene-CyP dyad to study energy and electron transfer processes between these moieties, and in a molecular triad to study a unique electron transfer process from a C60 radical anion to the CyP. It has been found that CyPs can be used as powerful electron acceptors in molecular systems to provide a large driving force for electron transfer that can aid in the process of the conversion of light to electrochemical potential. The results from these studies have led to a better understanding of the properties of CyPs, and have provided new insight into several electron transfer reactions.
ContributorsAntoniuk-Pablant, Antaeres' Dawn (Author) / Gust, Devens (Thesis advisor) / Moore, Ana L (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2015
153734-Thumbnail Image.png
Description
The Heliobacterial reaction center (HbRC) is generally regarded as the most primitive photosynthetic reaction center (RC) known. Even if the HbRC is structurally and functionally simple compared to higher plants, the mechanisms of energy transduction preceding, inside the core, and from the RC are not totally established. Elucidating these structures

The Heliobacterial reaction center (HbRC) is generally regarded as the most primitive photosynthetic reaction center (RC) known. Even if the HbRC is structurally and functionally simple compared to higher plants, the mechanisms of energy transduction preceding, inside the core, and from the RC are not totally established. Elucidating these structures and mechanisms are paramount to determining where the HbRC is in the grand scheme of RC evolution. In this work, the function and properties of the solubilized cyt c553, PetJ, were investigated, as well as the role HbRC localized menaquinone plays in light-induced electron transfer, and the interaction of the Nif-specific ferredoxin FdxB with reaction center particles devoid of bound FA/FB proteins. In chapter 2, I successfully express and purify a soluble version of PetJ that functions as a temperature dependent electron donor to P800+. Recombinant PetJ retains the spectroscopic characteristics of membrane-bound PetJ. The kinetics were characteristic of a bimolecular reaction with a second order rate of 1.53 x 104 M-1s-1 at room temperature and a calculated activation energy of 91 kJ/mol. In chapter 4, I use reverse phase high-performance liquid chromatography (HPLC) to detect the light-induced generation of Menaquinol-9 (MQH2) in isolated heliobacterial membranes. This process is dependent on laser power, pH, temperature, and can be modified by the presence of the artificial electron acceptor benzyl viologen (BV) and the inhibitors azoxystrobin and terbutryn. The addition of the bc complex inhibitor azoxystrobin decreases the ratio of MQ to MQH2. This indicates competition between the HbRC and the bc complex, and hints toward a truncated cyclic electron flow pathway. In chapter 5, the Nif-Specific ferredoxin FdxB was recombinantly expressed and shown to oxidize the terminal cofactor in the HbRC, FX-, in a concentration-dependent manner. This work indicates the HbRC may be able to reduce a wide variety of electron acceptors that may be involved in specific metabolic processes.
ContributorsKashey, Trevor (Author) / Redding, Kevin E (Thesis advisor) / Fromme, Petra (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2015
154290-Thumbnail Image.png
Description
Palladium metal in its various forms has been heavily studied for many catalytic, hydrogen storage and sensing applications and as an electrocatalyst in fuel cells. A short review on various applications of palladium and the mechanism of Pd nanoparticles synthesis will be discussed in chapter 1. Size dependent properties of

Palladium metal in its various forms has been heavily studied for many catalytic, hydrogen storage and sensing applications and as an electrocatalyst in fuel cells. A short review on various applications of palladium and the mechanism of Pd nanoparticles synthesis will be discussed in chapter 1. Size dependent properties of various metal nanoparticles and a thermodynamic theory proposed by Plieth to predict size dependent redox properties of metal nanoparticles will also be discussed in chapter 1.

To evaluate size dependent stability of metal nanoparticles using electrochemical techniques in aqueous media, a synthetic route was designed to produce water soluble Pd nanoparticles. Also, a purification technique was developed to obtain monodisperse metal nanoparticles to study size dependent stability using electrochemical methods. Chapter 2 will describe in detail the synthesis, characterization and size dependent anodic dissolution studies of water soluble palladium nanoparticles.

The cost associated with using expensive metal catalysts can further decreased by using the underpotential deposition (UPD) technique, in which one metal is electrodeposited in monolayer or submonolayer form on a different metal substrate. Electrochemically, this process can be detected by the presence of a deposition peak positive to the bulk deposition potential in a cyclic voltammetry (CV) experiment. The difference between the bulk deposition potential and underpotential deposition peak (i.e. the UPD shift), which is a measure of the energetics of the monolayer deposition step, depends on the work function difference between the metal pairs. Chapter 3 will explore how metal nanoparticles of different sizes will change the energetics of the UPD phenomenon, using the UPD of Cu on palladium nanoparticles as an example. It will be shown that the UPD shift depends on the size of the nanoparticle substrate in a way that is understandable based on the Plieth model.

High electrocatalytic activity of palladium towards ethanol oxidation in an alkaline medium makes it an ideal candidate for the anode electrocatalyst in direct ethanol based fuel cells (DEFCs). Chapter 4 will explore the poisoning of the catalytic activity of palladium in the presence of halide impurities, often used in synthesis of palladium nanoparticles as precursors or shape directing agents.
ContributorsKumar, Ashok (Author) / Buttry, Daniel A. (Thesis advisor) / Gould, Ian R. (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2016
155215-Thumbnail Image.png
Description
Proteins are essential for most biological processes that constitute life. The function of a protein is encoded within its 3D folded structure, which is determined by its sequence of amino acids. A variation of a single nucleotide in the DNA during transcription (nSNV) can alter the amino acid sequence (i.e.,

Proteins are essential for most biological processes that constitute life. The function of a protein is encoded within its 3D folded structure, which is determined by its sequence of amino acids. A variation of a single nucleotide in the DNA during transcription (nSNV) can alter the amino acid sequence (i.e., a mutation in the protein sequence), which can adversely impact protein function and sometimes cause disease. These mutations are the most prevalent form of variations in humans, and each individual genome harbors tens of thousands of nSNVs that can be benign (neutral) or lead to disease. The primary way to assess the impact of nSNVs on function is through evolutionary approaches based on positional amino acid conservation. These approaches are largely inadequate in the regime where positions evolve at a fast rate. We developed a method called dynamic flexibility index (DFI) that measures site-specific conformational dynamics of a protein, which is paramount in exploring mechanisms of the impact of nSNVs on function. In this thesis, we demonstrate that DFI can distinguish the disease-associated and neutral nSNVs, particularly for fast evolving positions where evolutionary approaches lack predictive power. We also describe an additional dynamics-based metric, dynamic coupling index (DCI), which measures the dynamic allosteric residue coupling of distal sites on the protein with the functionally critical (i.e., active) sites. Through DCI, we analyzed 200 disease mutations of a specific enzyme called GCase, and a proteome-wide analysis of 75 human enzymes containing 323 neutral and 362 disease mutations. In both cases we observed that sites with high dynamic allosteric residue coupling with the functional sites (i.e., DARC spots) have an increased susceptibility to harboring disease nSNVs. Overall, our comprehensive proteome-wide analysis suggests that incorporating these novel position-specific conformational dynamics based metrics into genomics can complement current approaches to increase the accuracy of diagnosing disease nSNVs. Furthermore, they provide mechanistic insights about disease development. Lastly, we introduce a new, purely sequence-based model that can estimate the dynamics profile of a protein by only utilizing coevolution information, eliminating the requirement of the 3D structure for determining dynamics.
ContributorsButler, Brandon Mac (Author) / Ozkan, S. Banu (Thesis advisor) / Vaiana, Sara (Committee member) / Ghirlanda, Giovanna (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2016
149420-Thumbnail Image.png
Description
In eukaryotes, DNA is packed in a highly condensed and hierarchically organized structure called chromatin, in which DNA tightly wraps around the histone octamer consisting of one histone 3-histone 4 (H3-H4) tetramer and two histone 2A- histone 2B (H2A-H2B) dimers with 147 base pairs in an almost two left handed

In eukaryotes, DNA is packed in a highly condensed and hierarchically organized structure called chromatin, in which DNA tightly wraps around the histone octamer consisting of one histone 3-histone 4 (H3-H4) tetramer and two histone 2A- histone 2B (H2A-H2B) dimers with 147 base pairs in an almost two left handed turns. Almost all DNA dependent cellular processes, such as DNA duplication, transcription, DNA repair and recombination, take place in the chromatin form. Based on the critical importance of appropriate chromatin condensation, this thesis focused on the folding behavior of the nucleosome array reconstituted using different templates with various controllable factors such as histone tail modification, linker DNA length, and DNA binding proteins. Firstly, the folding behaviors of wild type (WT) and nucleosome arrays reconstituted with acetylation on the histone H4 at lysine 16 (H4K16 (Ac)) were studied. In contrast to the sedimentation result, atomic force microscopy (AFM) measurements revealed no apparent difference in the compact nucleosome arrays between WT and H4K16 (Ac) and WT. Instead, an optimal loading of nucleosome along the template was found necessary for the Mg2+ induced nucleosome array compaction. This finding leads to the further study on the role of linker DNA in the nucleosome compaction. A method of constructing DNA templates with varied linker DNA lengths was developed, and uniformly and randomly spaced nucleosome arrays with average linker DNA lengths of 30 bp and 60 bp were constructed. After comprehensive analyses of the nucleosome arrays' structure in mica surface, the lengths of the linker DNA were found playing an important role in controlling the structural geometries of nucleosome arrays in both their extended and compact forms. In addition, higher concentration of the DNA binding domain of the telomere repeat factor 2 (TRF2) was found to stimulate the compaction of the telomeric nucleosome array. Finally, AFM was successfully applied to investigate the nucleosome positioning behaviors on the Mouse Mammary Tumor Virus (MMTV) promoter region, and two highly positioned region corresponded to nucleosome A and B were identified by this method.
ContributorsFu, Qiang (Author) / Lindsay, Stuart M (Thesis advisor) / Yan, Hao (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
149372-Thumbnail Image.png
Description
A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and

A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and a high binding affinity to about six equivalents of Cu2+. The goal of this study is to investigate the Cu2+ binding sites in SmbP and to understand how Cu2+ stabilizes the protein. Preliminary folding experiments indicated that Cu2+ greatly stabilizes SmbP. In this study, protein folding data from circular dichroism (CD) spectroscopy was used to elucidate the role of Cu2+ in stabilizing SmbP structure against unfolding induced by decreased pH, increased temperature, and chemical denaturants. The significant stabilization effects of Cu2+ were demonstrated by the observation that Cu2+-SmbP remained fully folded under extreme environmental conditions, such as acidic pH, 96 °C, and 8 M urea. Also, it was shown that Cu2+ is able to induce the refolding of unfolded SmbP in acidic solutions. These findings imply that the coordination of Cu2+ to histidine residues is responsible for the stabilization effects. The crystal structure of SmbP without Cu2+ has been determined. However, attempts to crystallize Cu2+-SmbP have not been successful. In this study, multidimensional NMR experiments were conducted in order to gain additional information regarding the Cu2+-SmbP structure, in particular its metal binding sites. Unambiguous resonance assignments were successfully made. Cα secondary chemical shifts confirmed that SmbP has a four α-helical structure. A Cu2+-protein titration experiment monitored by NMR indicated a top-to-bottom, sequential metal binding pattern for SmbP. In addition, several bioinformatics tools were used to complement the experimental approach and identity of the ligands in Cu2+-binding sites in SmbP is proposed.
ContributorsYan, Qin (Author) / Francisco, Wilson A (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
149330-Thumbnail Image.png
Description
Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the

Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the existence of well-established methods for library synthesis. Microarrays represent a powerful tool for screening thousands of molecules, on a small chip, for candidates that interact with enzymes and modulate their functions. In this work, a method is presented for screening high-density arrays to discover peptides that bind and modulate enzyme activity. A viscous polyvinyl alcohol (PVA) solution was applied to array surfaces to limit the diffusion of product molecules released from enzymatic reactions, allowing the simultaneous measurement of enzyme activity and binding at each peptide feature. For proof of concept, it was possible to identify peptides that bound to horseradish peroxidase (HRP), alkaline phosphatase (APase) and â-galactosidase (â-Gal) and substantially alter their activities by comparing the peptide-enzyme binding levels and bound enzyme activity on microarrays. Several peptides, selected from microarrays, were able to inhibit â-Gal in solution, which demonstrates that behaviors selected from surfaces often transfer to solution. A mechanistic study of inhibition revealed that some of the selected peptides inhibited enzyme activity by binding to enzymes and inducing aggregation. PVA-coated peptide slides can be rapidly analyzed, given an appropriate enzyme assay, and they may also be assayed under various conditions (such as temperature, pH and solvent). I have developed a general method to discover molecules that modulate enzyme activity at desired conditions. As demonstrations, some peptides were able to promote the thermal stability of bound enzyme, which were selected by performing the microarray-based enzyme assay at high temperature. For broad applications, selected peptide ligands were used to immobilize enzymes on solid surfaces. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activities and stabilities. Peptide-modified surfaces may prove useful for immobilizing enzymes on surfaces with optimized orientation, location and performance, which are of great interest to the biocatalysis industry.
ContributorsFu, Jinglin (Author) / Woodbury, Neal W (Thesis advisor) / Johnston, Stephen A. (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010