Matching Items (123)
Filtering by

Clear all filters

141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
Description
Fumonisins are fungal metabolites found in corn and cereals. Fumonisins pose health risks, including suspected carcinogenicity, yet their mechanism of toxicity remains unclear. While modifications in the human gut microbiome can impact host health, the effects of fumonisins on the microbiome are not well understood. Thus, our study aimed to

Fumonisins are fungal metabolites found in corn and cereals. Fumonisins pose health risks, including suspected carcinogenicity, yet their mechanism of toxicity remains unclear. While modifications in the human gut microbiome can impact host health, the effects of fumonisins on the microbiome are not well understood. Thus, our study aimed to assess a possible dose-response relationship between fumonisin B1 (FB1) and the gut microbiome. We utilized in vitro anaerobic bioreactors with media simulating most of the nutrients in the human large intestine, inoculated them with fecal samples from 19 healthy adults and treated them with FB1 at concentrations of 0, 10, 100, and 1000 ppb. Analyses of bioreactor headspace revealed declining methane production over time, possibly influenced by the addition of dimethyl sulfoxide (DMSO). Significant differences in acetic acid production were observed in 10 ppb reactor (Day 2) and 100 ppb reactor (Day 8) when compared to 0 ppb control. Microbiome analysis showed minimal shifts in microbial relative abundances during FB1 treatment, except for Desulfovibrio desulfuricans C at Day 8 when compared between 0 ppb and 10 ppb as well as 10 ppb and 1000 ppb at Day 16. Alpha diversity analyses indicated significant differences in observed features within bioreactors of different treatments, with some variation in Faith’s Phylogenetic Diversity between the 0 ppb and 10 ppb bioreactors. Beta diversity analyses, however, revealed no significant differences between bioreactors. Overall, our findings suggest no clear dose-response relationship between FB1 treatment and gut microbiome composition/functions. The presence of DMSO may have obscured potential effects. This research will help contribute to our understanding of mycotoxicity influence on the human gut microbiome.
ContributorsSanchez Carreon, Aurely (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Cheng, Qiwen (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05
Description
As obesity rates continue to rise in adolescents and young children, the concern for poor future health of the younger population grows. Physical activity and improving nutrition are two ways to combat obesity rates, and the Sustainability via Active Gardening Education (SAGE) project addresses this in underserved and low-income communities

As obesity rates continue to rise in adolescents and young children, the concern for poor future health of the younger population grows. Physical activity and improving nutrition are two ways to combat obesity rates, and the Sustainability via Active Gardening Education (SAGE) project addresses this in underserved and low-income communities in Maricopa County. This project employs a curriculum designed to promote physical activity and healthy eating for Early Care and Education (ECE) sites, most of which are daycares. Further, utilizing indicators of future health can also allow for us to understand and lower obesity rates. One indicator of future health is grip strength: greater grip strength is associated with healthier outcomes such as lower triglycerides, blood pressure, and body mass index. Grip strength has been observed in the older population; however, there are few studies looking at grip strength in younger children, namely preschoolers. As grip strength is a predictor of health, it follows that it should be observed in preschoolers, and improved, if possible, by factors such as physical activity, which would ultimately improve obesity rates. This study aimed to see if there was any relationship between physical activity and grip strength in preschoolers aged 3-5 years old. To do so, grip strength, hand length, height, weight, and information regarding physical activity of preschoolers enrolled in the SAGE project were collected. Physical activity and grip strength were not found to be significantly associated in this study; however, hand length and hand strength were associated. Among secondary outcomes, it was observed that males of ages 3 to 5-years-old may have greater hand grip strength than females of the same age group. Although this was not statistically significant, there was a trend toward statistical significance. Small sample size hampered observation of expected relationships between hand grip strength and dominant hand of the participants, and hand grip strength was not significantly related with BMI. Future directions would consist of collecting longitudinal data, as well as calling back previous years’ participants for additional data, so that there is a larger sample size for data analysis.
ContributorsAtluri, Haarika (Author) / Lee, Rebecca (Thesis director) / Tucker, Derek (Committee member) / Cantu Garcia, Lisbeth (Committee member) / De Mello, Gabrielli (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05