Matching Items (139)
128492-Thumbnail Image.png
Description

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

ContributorsTuna, Aslihan (Author) / Wu, Kedi (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Cai, Hui (Author) / Aoki, Toshihiro (Author) / Horzum, Seyda (Author) / Kang, Jun (Author) / Peeters, Francois M. (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-05
128452-Thumbnail Image.png
Description

Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C%

Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C% of 37.3.

ContributorsGuida, Brandon (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-28
128505-Thumbnail Image.png
Description

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviors. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2.

ContributorsWang, Gang (Author) / Robert, Cedric (Author) / Tuna, Aslihan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Alamdari, Sarah (Author) / Gerber, Iann C. (Author) / Amand, Thierry (Author) / Marie, Xavier (Author) / Tongay, Sefaattin (Author) / Urbaszek, Bernhard (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-14
156151-Thumbnail Image.png
Description
Alloying in semiconductors has enabled many civilian technologies in optoelectronic, photonic fields and more. While the phenomenon of alloying is well established in traditional bulk semiconductors, owing to vastly available ternary phase diagrams, the ability to alloy in 2D systems are less clear. Recently anisotropic materials such as ReS2 and

Alloying in semiconductors has enabled many civilian technologies in optoelectronic, photonic fields and more. While the phenomenon of alloying is well established in traditional bulk semiconductors, owing to vastly available ternary phase diagrams, the ability to alloy in 2D systems are less clear. Recently anisotropic materials such as ReS2 and TiS3 have been extensively studied due to their direct-gap semiconductor and high mobility behaviors. This work is a report on alloys of ReS2 & ReSe2 and TiS3 &TiSe3.

Alloying selenium into ReS2 in the creation of ReS2xSe2-x, tunes the band gap and changes its vibrational spectrum. Depositing this alloy using bottom up approach has resulted in the loss of crystallinity. This loss of crystallinity was evidenced by grain boundaries and point defect shown by TEM images.

Also, in the creation of TiS3xSe3-x, by alloying Se into TiS3, a fixed ratio of 8% selenium deposit into TiS3 host matrix is observed. This is despite the vastly differing precursor amounts and growth temperatures, as evinced by detailed TEM, EDAX, TEM diffraction, and Raman spectroscopy measurements. This unusual behavior contrasts with other well-known layered material systems such as MoSSe, WMoS2 where continuous alloying can be attained. Cluster expansion theory calculations suggest that only limited composition (x) can be achieved. Considering the fact that TiSe3 vdW crystals have not been synthesized in the past, these alloying rejections can be attributed to energetic instability in the ternary phase diagrams estimated by calculations performed. Overall findings highlight potential means and challenges in achieving stable alloying in promising direct gap and high carrier mobility TiS3 materials.
ContributorsAgarwal, Ashutosh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
Description
Sustainable purchasing has become and increasingly salient way by which local governments can decrease their resource consumptions, while also addressing broader climate action goals. Successfully implemented sustainable purchasing policies have the potential to reduce consumption and waste, expand green purchasing markets, and catalyze spillover benefits such as financial savings. Furthermore,

Sustainable purchasing has become and increasingly salient way by which local governments can decrease their resource consumptions, while also addressing broader climate action goals. Successfully implemented sustainable purchasing policies have the potential to reduce consumption and waste, expand green purchasing markets, and catalyze spillover benefits such as financial savings. Furthermore, city-level actions have become increasingly significant as the federal government ceases critical climate research and pulls out of collaborative climate deals (i.e. The Paris Climate Accord). Using data from the Sustainable Purchasing Researching Initiative at Arizona State University’s Center for Organization Research and Design, as well as qualitative policy analyses, the author investigates the elements of a city’s sustainable purchasing policy (SPP) that are related to its implementation success. Furthermore, the author compares these initial findings to the case study of Phoenix, AZ where she explores whether these elements are also present in the City of Phoenix’s sustainable purchasing policy. The author finds that six key policy elements are generally associated with higher SPP implementation success rates — mandatory requirements, accountability, multi-level governance, vendors requirements, advocacy, and continual improvement. While additional policy elements undoubtedly play a role in the successful implementation of a SPP, the author concludes cities that incorporate these specific elements are better positioned for successful and sustainable implementation. Conclusions further show that the City of Phoenix’s 2007 EPP contained only two of these policy elements. As a result of this project and the author’s work with the City, the 2017 revised SPP incorporates all six policy elements.
ContributorsBurwell, Caitlin (Author) / Darnall, Nicole (Contributor) / Schoon, Michael (Contributor)
Created2017-12-01
128227-Thumbnail Image.png
Description

Adaptive comanagement endeavors to increase knowledge and responsiveness in the face of uncertainty and complexity. However, when collaboration between agency and nonagency stakeholders is mandated, rigid institutions may hinder participation and ecological outcomes. In this case study we analyzed qualitative data to understand how participants perceive strengths and challenges within

Adaptive comanagement endeavors to increase knowledge and responsiveness in the face of uncertainty and complexity. However, when collaboration between agency and nonagency stakeholders is mandated, rigid institutions may hinder participation and ecological outcomes. In this case study we analyzed qualitative data to understand how participants perceive strengths and challenges within an emerging adaptive comanagement in the Agua Fria Watershed in Arizona, USA that utilizes insight and personnel from a long-enduring comanagement project, Las Cienegas. Our work demonstrates that general lessons and approaches from one project may be transferable, but particular institutions, management structures, or projects must be place-specific. As public agencies establish and expand governance networks throughout the western United States, our case study has shed light on how to maintain a shared vision and momentum within an inherently murky and shared decision-making environment.

ContributorsChilds, Cameron (Author) / York, Abigail (Author) / White, Dave (Author) / Schoon, Michael (Author) / Bodner, Gitanjali S. (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013
136040-Thumbnail Image.png
Description
Collaborative research is not only a form of social and human capital and a public good, but also a fundamental elicitor of positive Collective Action. Collaborative Research Networks can serve as models of proactive and purposive Collective Action and catalysts of societal change, if they function as more than hubs

Collaborative research is not only a form of social and human capital and a public good, but also a fundamental elicitor of positive Collective Action. Collaborative Research Networks can serve as models of proactive and purposive Collective Action and catalysts of societal change, if they function as more than hubs of research and knowledge. It is the goal of this Honors Thesis to examine the current nature under which collaborative research networks, focused on matters of Global Health or Sustainability, operate., how they are organized, what type of collaboration they engage in, and who collaborates with whom. A better understanding of these types of networks can lead to the formation of more effective networks that can develop innovative solutions to our collective Global Health and Sustainability problems.
ContributorsHodzic, Mirna (Author) / Van Der Leeuw, Sander (Thesis director) / Janssen, Marco (Committee member) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
131627-Thumbnail Image.png
Description
Hyperspectral imaging is a novel technology which allows for the collection of reflectance spectra of a sample in-situ and at a distance. A rapidly developing technology, hyperspectral imaging has been of particular interest in the field of art characterization, authentication, and conservation as it avoids the pitfalls of traditional characterization

Hyperspectral imaging is a novel technology which allows for the collection of reflectance spectra of a sample in-situ and at a distance. A rapidly developing technology, hyperspectral imaging has been of particular interest in the field of art characterization, authentication, and conservation as it avoids the pitfalls of traditional characterization techniques and allows for the rapid and wide collection of data never before possible. It is hypothesized that by combining the power of hyperspectral imaging with machine learning, a new framework for the in-situ and automated characterization and authentication of artworks can be developed. This project, using the CMYK set of inks, began the preliminary development of such a framework. It was found that hyperspectral imaging and machine learning as a combination show significant potential as an avenue for art authentication, though further progress and research is needed to match the reliability of status quo techniques.
ContributorsChowdhury, Tanzil Aziz (Author) / Newman, Nathan (Thesis director) / Tongay, Sefaattin (Committee member) / School of Politics and Global Studies (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Transition metal dichalcogenides (TMDs) are a family of layered crystals with the chemical formula MX2 (M = W, Nb, Mo, Ta and X = S, Se, Te). These TMDs exhibit many fascinating optical and electronic properties making them strong candidates for high-end electronics, optoelectronic application, and spintronics. The layered structure

Transition metal dichalcogenides (TMDs) are a family of layered crystals with the chemical formula MX2 (M = W, Nb, Mo, Ta and X = S, Se, Te). These TMDs exhibit many fascinating optical and electronic properties making them strong candidates for high-end electronics, optoelectronic application, and spintronics. The layered structure of TMDs allows the crystal to be mechanically exfoliated to a monolayer limit, where bulk-scale properties no longer apply and quantum effects arise, including an indirect-to-direct bandgap transition. Controllably tuning the electronic properties of TMDs like WSe2 is therefore a highly attractive prospect achieved by substitutionally doping the metal atoms to enable n- and p-type doping at various concentrations, which can ultimately lead to more effective electronic devices due to increased charge carriers, faster transmission times and possibly new electronic and optical properties to be probed. WSe2 is expected to exhibit the largest spin splitting size and spin-orbit coupling, which leads to exciting potential applications in spintronics over its similar TMD counterparts, which can be controlled through electrical doping. Unfortunately, the well-established doping technique of ion implantation is unable to preserve the crystal quality leading to a major roadblock for the electronics applications of tungsten diselenide. Synthesizing WSe2 via chemical vapor transport (CVT) and flux method have been previously established, but controllable p-type (niobium) doping WSe2 in low concentrations ranges (<1 at %) by CVT methods requires further experimentation and study. This work studies the chemical vapor transport synthesis of doped-TMD W1-xNbxSe2 through characterization techniques of X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and X-ray Photoelectron Spectroscopy techniques. In this work, it is observed that excess selenium transport does not enhance the controllability of niobium doping in WSe2, and that tellurium tetrachloride (TeCl4) transport has several barriers in successfully incorporating niobium into WSe2.
ContributorsRuddick, Hayley (Author) / Tongay, Sefaattin (Thesis director) / Jiao, Yang (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2024-05