Matching Items (389)
Filtering by

Clear all filters

Description

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies.

ContributorsMoya, Noel (Author) / Cutts, Joshua (Author) / Gaasterland, Terry (Author) / Willert, Karl (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-09
Description

Effective DNA translocation into nanochannels is critical for advancing genome mapping and future single-molecule DNA sequencing technologies. We present the design and hydrodynamic study of a diamond-shaped gradient pillar array connected to nanochannels for enhancing the success of DNA translocation events. Single-molecule fluorescence imaging is utilized to interrogate the hydrodynamic

Effective DNA translocation into nanochannels is critical for advancing genome mapping and future single-molecule DNA sequencing technologies. We present the design and hydrodynamic study of a diamond-shaped gradient pillar array connected to nanochannels for enhancing the success of DNA translocation events. Single-molecule fluorescence imaging is utilized to interrogate the hydrodynamic interactions of the DNA with this unique structure, evaluate key DNA translocation parameters, including speed, extension, and translocation time, and provide a detailed mapping of the translocation events in nanopillar arrays coupled with 10 and 50 μm long channels. Our analysis reveals the important roles of diamond-shaped nanopillars in guiding DNA into as small as 30 nm channels with minimized clogging, stretching DNA to nearly 100% of their dyed contour length, inducing location-specific straddling of DNA at nanopillar interfaces, and modulating DNA speeds by pillar geometries. Importantly, all critical features down to 30 nm wide nanochannels are defined using standard photolithography and fabrication processes, a feat aligned with the requirement of high-volume, low-cost production.

ContributorsWang, Chao (Author) / Bruce, Robert L. (Author) / Duch, Elizabeth A. (Author) / Patel, Jyotica V. (Author) / Smith, Joshua T. (Author) / Astier, Yann (Author) / Wunsch, Benjamin H. (Author) / Meshram, Siddharth (Author) / Galan, Armand (Author) / Scerbo, Chris (Author) / Pereira, Michael A. (Author) / Wang, Deqiang (Author) / Colgan, Evan G. (Author) / Lin, Qinghuang (Author) / Stolovitzky, Gustavo (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01
Description

Precise electrical manipulation of nanoscale defects such as vacancy nano-filaments is highly desired for the multi-level control of ReRAM. In this paper we present a systematic investigation on the pulse-train operation scheme for reliable multi-level control of conductive filament evolution. By applying the pulse-train scheme to a 3 bit per

Precise electrical manipulation of nanoscale defects such as vacancy nano-filaments is highly desired for the multi-level control of ReRAM. In this paper we present a systematic investigation on the pulse-train operation scheme for reliable multi-level control of conductive filament evolution. By applying the pulse-train scheme to a 3 bit per cell HfO2 ReRAM, the relative standard deviations of resistance levels are improved up to 80% compared to the single-pulse scheme. The observed exponential relationship between the saturated resistance and the pulse amplitude provides evidence for the gap-formation model of the filament-rupture process.

ContributorsZhao, L. (Author) / Chen, H.-Y. (Author) / Wu, S.-C (Author) / Jiang, Z. (Author) / Yu, Shimeng (Author) / Hou, T.-H. (Author) / Wong, H.-S. Philip (Author) / Nishi, Y. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-03-26
Description

The chemokine, stromal cell-derived factor 1α (SDF-1α), is a key regulator of the endogenous neural progenitor/stem cell-mediated regenerative response after neural injury. Increased and sustained bioavailability of SDF-1α in the peri-injury region is hypothesized to modulate this endogenous repair response. Here, we describe poly(lactic-co-glycolic) acid (PLGA) nanoparticles capable of releasing

The chemokine, stromal cell-derived factor 1α (SDF-1α), is a key regulator of the endogenous neural progenitor/stem cell-mediated regenerative response after neural injury. Increased and sustained bioavailability of SDF-1α in the peri-injury region is hypothesized to modulate this endogenous repair response. Here, we describe poly(lactic-co-glycolic) acid (PLGA) nanoparticles capable of releasing bioactive SDF-1α in a sustained manner over 60 days after a burst of 23%. Moreover, we report a biphasic cellular response to SDF-1α concentrations thus the large initial burst release in an in vivo setting may result in supratherapeutic concentrations of SDF-1α. Specific protein–protein interactions between SDF-1α and fibrin (as well as its monomer, fibrinogen) were exploited to control the magnitude of the burst release. Nanoparticles embedded in fibrin significantly reduced the amount of SDF-1α released after 72 h as a function of fibrin density. Therefore, the nanoparticle/fibrin composites represented a means to independently tune the magnitude of the burst phase release from the nanoparticles while perserving a bioactive depot of SDF-1α for release over 60 days.

ContributorsDutta, Dipankar (Author) / Fauer, Chase (Author) / Mulleneux, H.L. (Author) / Stabenfeldt, Sarah (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-08-11
Description

Important antibiotics in human medicine have been used for many decades in animal agriculture for growth promotion and disease treatment. Several publications have linked antibiotic resistance development and spread with animal production. Aquaculture, the newest and fastest growing food production sector, may promote similar or new resistance mechanisms. This review

Important antibiotics in human medicine have been used for many decades in animal agriculture for growth promotion and disease treatment. Several publications have linked antibiotic resistance development and spread with animal production. Aquaculture, the newest and fastest growing food production sector, may promote similar or new resistance mechanisms. This review of 650+ papers from diverse sources examines parallels and differences between land-based agriculture of swine, beef, and poultry and aquaculture. Among three key findings was, first, that of 51 antibiotics commonly used in aquaculture and agriculture, 39 (or 76%) are also of importance in human medicine; furthermore, six classes of antibiotics commonly used in both agriculture and aquaculture are also included on the World Health Organization’s (WHO) list of critically important/highly important/important antimicrobials. Second, various zoonotic pathogens isolated from meat and seafood were observed to feature resistance to multiple antibiotics on the WHO list, irrespective of their origin in either agriculture or aquaculture. Third, the data show that resistant bacteria isolated from both aquaculture and agriculture share the same resistance mechanisms, indicating that aquaculture is contributing to the same resistance issues established by terrestrial agriculture. More transparency in data collection and reporting is needed so the risks and benefits of antibiotic usage can be adequately assessed.

ContributorsDone, Hansa (Author) / Venkatesan, Arjunkrishna (Author) / Halden, Rolf (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-01
Description

Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi

Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50–100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236–252 °C by varying nanoparticle diameter from 8.1–14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt–freeze cycles. The nanocomposite’s Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

ContributorsLiu, Minglu (Author) / Ma, Yuanyu (Author) / Wu, Hsinwei (Author) / Wang, Robert (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01
Description

Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support

Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.

ContributorsNunes Da Rocha, Ulisses (Author) / Cadillo-Quiroz, Hinsby (Author) / Karaoz, Ulas (Author) / Rajeev, Lara (Author) / Klitgord, Niels (Author) / Dunn, Sean (Author) / Truong, Viet (Author) / Buenrostro, Mayra (Author) / Bowen, Benjamin P. (Author) / Garcia-Pichel, Ferran (Author) / Mukhopadhyay, Aindrila (Author) / Northen, Trent R. (Author) / Brodie, Eoin L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-19
Description

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-12
Description

We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to

We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces.

ContributorsSong, Zeming (Author) / Wang, Xu (Author) / Lv, Cheng (Author) / An, Yonghao (Author) / Liang, Mengbing (Author) / Ma, Teng (Author) / He, David (Author) / Zheng, Ying-Jie (Author) / Huang, Shi-Qing (Author) / Yu, Hongyu (Author) / Jiang, Hanqing (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-11
Description

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Xu, Shouhuai (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-20