Matching Items (5)
Filtering by

Clear all filters

133797-Thumbnail Image.png
Description
Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this

Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this creative project was to introduce engineering concepts in a high school class to reveal and investigate the ways in which engineering concepts can be successfully introduced to a larger student populace to increase interest in engineering programs, courses, and degrees. A lesson plan and corresponding materials - including circuit kits and a simulated ball launching station with graphical display - were made to accomplish this goal. Throughout the lesson students were asked to (1) use given materials to accomplish a goal, (2) predict outcomes based on conceptual understanding and mathematical calculations, (3) test predictions, (4) record data, and (5) analyze data to generate results. The students first created a simple circuit to understand the circuit components and learn general electrical engineering concepts. A simple light dimmer circuit let students demonstrate understanding of electrical concepts (e.g., voltage, current resistance) before using the circuit to a simulated motor in order to launch a ball. The students were then asked to predict the time and height of a ball launched with various settings of their control circuit. The students were able to test their theories with the simulated launcher test set up shown in Figure 25 and collect data to create a parabolic height versus time graph. Based on the measured graph, the students were able to record their results and compare calculated values to real-world measured values. The results of the study suggest ways to introduce students to engineering while developing hands-on concept modeling of projectile motion and circuit design in math classrooms. Additionally, this lesson identifies a rich topic for teachers and STEM education researchers to explore lesson plans with interdisciplinary connections to engineering. This report will include the inspiration for the product, related work, iterative design process, and the final design. This information will be followed by user feedback, a project reflection, and lessons learned. The report will conclude with a summary and a discussion of future work.
ContributorsBurgess, Kylee Rae (Author) / Jordan, Shawn (Thesis director) / Sohoni, Sohum (Committee member) / Kinach, Barbara (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Brains and computers have been interacting since the invention of the computer. These two entities have worked together to accomplish a monumental set of goals, from landing man on the moon to helping to understand how the universe works on the most microscopic levels, and everything in between. As the

Brains and computers have been interacting since the invention of the computer. These two entities have worked together to accomplish a monumental set of goals, from landing man on the moon to helping to understand how the universe works on the most microscopic levels, and everything in between. As the years have gone on, the extent and depth of interaction between brains and computers have consistently widened, to the point where computers help brains with their thinking in virtually infinite everyday situations around the world. The first purpose of this research project was to conduct a brief review for the purposes of gaining a sound understanding of how both brains and computers operate at fundamental levels, and what it is about these two entities that allow them to work evermore seamlessly as the years go on. Next, a history of interaction between brains and computers was developed, which expanded upon the first task and helped to contribute to visions of future brain-computer interaction (BCI). The subsequent and primary task of this research project was to develop a theoretical framework for a potential brain-aiding device of the future. This was done by conducting an extensive literature review regarding the most advanced BCI technology in modern times and expanding upon the findings to argue feasibility of the future device and its components. Next, social predictions regarding the acceptance and use of the new technology were made by designing and executing a survey based on the Unified Theory of the Acceptance and Use of Technology (UTAUT). Finally, general economic predictions were inferred by examining several relationships between money and computers over time.
ContributorsThum, Giuseppe Edwardo (Author) / Gaffar, Ashraf (Thesis director) / Gonzalez-Sanchez, Javier (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133510-Thumbnail Image.png
Description
Intelligence is a loosely defined term, but it is a quality that we try to measure in humans, animals, and recently machines. Progress in artificial intelligence is slow, but we have recently made breakthroughs by paying attention to biology and neuroscience. We have not fully explored what biology has to

Intelligence is a loosely defined term, but it is a quality that we try to measure in humans, animals, and recently machines. Progress in artificial intelligence is slow, but we have recently made breakthroughs by paying attention to biology and neuroscience. We have not fully explored what biology has to offer us in AI research, and this paper explores aspects of intelligent behavior in nature that machines still struggle with.
ContributorsLahtinen, David (Author) / Gaffar, Ashraf (Thesis director) / Sanchez, Javier Gonzalez (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131759-Thumbnail Image.png
Description
As autonomous vehicle development rapidly accelerates, it is important to not lose sight of what the worst case scenario is during the drive of an autonomous vehicle. Autonomous vehicles are not perfect, and will not be perfect for the foreseeable future. These vehicles will shift the responsibility of driving to

As autonomous vehicle development rapidly accelerates, it is important to not lose sight of what the worst case scenario is during the drive of an autonomous vehicle. Autonomous vehicles are not perfect, and will not be perfect for the foreseeable future. These vehicles will shift the responsibility of driving to the passenger in front of the wheel, regardless if said passenger is prepared to do so. However, by studying the human reaction to an autonomous vehicle crash, researchers can mitigate the risk to the passengers in an autonomous vehicle. Located on the ASU Polytechnic campus, there is a car simulation lab, or SIM lab, that enables users to create and simulate various driving scenarios using the Drive Safety and HyperDrive software. Using this simulator and the Window of Intervention, the time a driver has to avoid a crash, vital research into human reaction time while in an autonomous environment can be safely performed. Understanding the Window of Intervention is critical to the development of solutions that can accurately and efficiently help a human driver. After first describing the simulator and its operation in depth, a deeper look will be offered into the autonomous vehicle field, followed by an in-depth explanation into the Window of Intervention and how it is studied and an experiment that looks to study both the Window of Intervention and human reactions to certain events. Finally, additional insight from one of the authors of this paper will be given documenting their contributions to the study as a whole and their concerns about using the simulator for further research.
ContributorsSalceda, Rhiannon (Co-author) / Baratti, Alexander (Co-author) / Gaffar, Ashraf (Thesis director) / Gonzalez Sanchez, Javier (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
DescriptionThis document explains the design of a traffic simulator based on an integral-based state machine. This simulator is different from existing traffic simulators because it is driven by a flexible model that supports many different light configurations and has a user-friendly interface.
ContributorsSapp, Curtis Mark (Author) / Gaffar, Ashraf (Thesis director) / Gonzalez Sanchez, Javier (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05