Matching Items (98)
134965-Thumbnail Image.png
Description
Asperger's syndrome is a high-functioning subset of Autism Spectrum Disorders (ASD). Diagnosed patients often lack refined social skills but possess a normal level of cognitive skills without delay in language development. These deficient social skills can impact the ability to find and maintain a job, which can be burdensome for

Asperger's syndrome is a high-functioning subset of Autism Spectrum Disorders (ASD). Diagnosed patients often lack refined social skills but possess a normal level of cognitive skills without delay in language development. These deficient social skills can impact the ability to find and maintain a job, which can be burdensome for all individuals involved in the patient's life. Although the causes of this condition are largely unknown, a wide variety of social and cognitive therapies have been used to reduce symptom severity, one of which is Mindfulness-Based Stress Reduction (MBSR). Mindfulness is the act of being aware on purpose to whatever is being experienced in the present moment with non-judgment and receptivity. MBSR has been used to bring greater awareness to sensations, thoughts and emotions with the result being reduced reactivity and increased purposeful responsiveness. It is therefore the aim of this study to address the use of an 8-week Mindfulness-Based Stress Reduction in adolescents with clinical Asperger's Syndrome to reduce reactive tendencies. This study will utilize a randomized control group of waitlisted participants given MBSR informational material and a practicing MBSR group. Post-MBSR Parent Global Impressions-III (PGI-III) and Social Responsiveness Scale scores are hypothesized to be improved in MBSR group and unaffected in the control for behavioral markers with no change in core autistic symptoms. Daily average cortisol response is also expected to decrease in the experimental group with unaffected levels in the control.
ContributorsBrzezinski, Molly Alexandra (Author) / Smith, Brian (Thesis director) / Sebren, Ann (Committee member) / School of Music (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134984-Thumbnail Image.png
Description
The mammalian olfactory system is commonly studied by using the mouse as a model system. Odor habituation is used to investigate odor perception and learning processes. Most previous experimental preparations have been tedious, requiring a researcher to manually change odorants, record investigation time and duration at each odorant, or physical

The mammalian olfactory system is commonly studied by using the mouse as a model system. Odor habituation is used to investigate odor perception and learning processes. Most previous experimental preparations have been tedious, requiring a researcher to manually change odorants, record investigation time and duration at each odorant, or physical alteration on the mice to enable video tracking. These limitations were overcame by creating an odorized hole-board to allow for systematic and automatic recording of olfactory behavior in mice. A cohort of five male mice were utilized in these experiments and the responses to the odor of strawberries, a diet staple of wile mice, were examined. Experiment 1 showed that free-feeding mice exhibit a preference to locations with strawberry (over control locations), even when these locations can only be identified using olfaction. This preference habituates within a trial but not across days. Experiment 2 showed that strawberry odor without reward causes habituation or extinction to the odor both within trials and across days. From these experiments, it can be concluded that mice innately explore strawberry odor and this can be exploited to the study odor habituation using an odorized hole-board.
ContributorsMa, Jason (Author) / Smith, Brian (Thesis director) / Gerkin, Richard (Committee member) / Oddo, Salvatore (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135022-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine

Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine tyramine as an important factor underlying this form of learning in honey bees. We show that dsRNA targeted to disrupt the tyramine receptors, specifically affects latent inhibition but not excitatory associative conditioning. Our results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
ContributorsPetersen, Mary Margaret (Author) / Smith, Brian (Thesis director) / Wang, Ying (Committee member) / Sinakevitch, Irina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135150-Thumbnail Image.png
Description
In Apis mellifera, gustatory responsiveness to sucrose is a good indicator of learning ability \u2014 in that individuals with high sucrose responsiveness will typically form faster, longer-lasting associations with conditioned stimulus than individuals with a low sucrose responsiveness. The purpose of this study was to determine whether experience with olfactory

In Apis mellifera, gustatory responsiveness to sucrose is a good indicator of learning ability \u2014 in that individuals with high sucrose responsiveness will typically form faster, longer-lasting associations with conditioned stimulus than individuals with a low sucrose responsiveness. The purpose of this study was to determine whether experience with olfactory conditioning had lasting effects on gustatory responsiveness. Groups were placed in an environment that would facilitate association of an odor to a sucrose reward, tested for retention, then tested for gustatory responsiveness. Control groups underwent the same testing schedule, but were not exposed to odor in the first environment. There was no significant difference in gustatory responsiveness between the two groups. Mann-Whitney tests were used to analyze the results, and though the mean GRS score was lower among the treatment group there was no significant trend, possibly due to small sample sizes.
ContributorsSeemann, J. H. (Author) / Amdam, Gro (Thesis director) / Smith, Brian (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
161592-Thumbnail Image.png
Description
Globally, about two-thirds of the population is latently infected with herpes simplex virus type 1 (HSV-1). HSV-1 is a large double stranded DNA virus with a genome size of ~150kbp. Small defective genomes, which minimally contain an HSV-1 origin of replication and packaging signal, arise naturally via recombination during viral

Globally, about two-thirds of the population is latently infected with herpes simplex virus type 1 (HSV-1). HSV-1 is a large double stranded DNA virus with a genome size of ~150kbp. Small defective genomes, which minimally contain an HSV-1 origin of replication and packaging signal, arise naturally via recombination during viral DNA replication. These small defective genomes can be mimicked by constructing a bacterial plasmid containing the HSV-1 origin of replication and packaging signal, transfecting these recombinant plasmids into mammalian cells, and infecting with a replicating helper virus. The absence of most viral genes in the amplicon vector allows large pieces of foreign DNA (up to 150kbp) to be incorporated. The HSV-1 amplicon is replicated and packaged by the helper virus to form HSV-1 particles containing the amplicon DNA. We constructed a novel HSV-1 amplicon vector system containing lambda phage-derived attR sites to facilitate insertion of transgenes by Invitrogen Gateway recombination. To demonstrate that the amplicon vectors work as expected, we packaged the vector constructs expressing Emerald GFP using the replication-competent helper viruses OK-14 or HSV-mScartlet-I-UL25 in Vero cells and demonstrate that the vector stock can subsequently transduce and express Emerald GFP. In further work, we will insert transgenes into the amplicon vector using Invitrogen Gateway recombination to study their functionality.
ContributorsVelarde, Kimberly (Author) / Hogue, Ian B (Thesis advisor) / Manfredsson, Fredric (Committee member) / Sandoval, Ivette (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2021
163973-Thumbnail Image.png
Description

Caracals (Caracal caracal) are a felid species native to regions of southern Africa and western and central Asia. Despite their relatively high prevalence, the majority of research conducted on caracals has been undertaken on captive individuals, which encounter significantly different environments and exhibit different behaviors in comparison to caracals in

Caracals (Caracal caracal) are a felid species native to regions of southern Africa and western and central Asia. Despite their relatively high prevalence, the majority of research conducted on caracals has been undertaken on captive individuals, which encounter significantly different environments and exhibit different behaviors in comparison to caracals in the wild. Thereby, they likely have a vastly different virome. The goal of this study was to identify known and unknown DNA viruses associated with free-ranging caracals. Caracal fecal and organ samples were obtained from a caracal surveillance study undertaken in the Western Cape region of South Africa. Parasitic ticks found feeding on caracals were also obtained. Using a viral metagenomic informed approach, a novel circovirus (family Circoviridae) was detected and characterized in caracal fecal, kidney, spleen, and liver samples, as well as in ticks feeding on the caracals. To our knowledge, this is the first circovirus identified in caracals. The novel circovirus was determined to be closely related to a canine circovirus. These findings expand the knowledge of viral diversity and caracals and are greatly important to caracal conservation efforts as well as conservation efforts of other animals within their ecosystem.

ContributorsCollins, Courtney (Author) / Varsani, Arvind (Thesis director) / Dolby, Greer (Committee member) / Kraberger, Simona (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
171365-Thumbnail Image.png
Description
Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically

Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically approved to treat only 10 out of the greater than 200 known pathogenic human viruses. Additionally, as obligate intracellular parasites, many virus functions are intimately coupled with host cellular processes. As such, the development of a clinically relevant antiviral is challenged by the limited number of clear targets per virus and necessitates an extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. Therefore, a means to develop virus- or strain-specific antivirals without detailed insight into each idiosyncratic biochemical mechanism may aid in the development of antivirals against a larger swath of pathogens. Such an approach will tremendously benefit from having the specific molecular recognition of viral species as the lowest barrier. Here, I modify a nanobody (anti-green fluorescent protein) that specifically recognizes non-essential epitopes (glycoprotein M-pHluorin chimera) presented on the extra virion surface of a virus (Pseudorabies virus strain 486). The nanobody switches from having no inhibitory properties (tested up to 50 μM) to ∼3 nM IC50 in in vitro infectivity assays using porcine kidney (PK15) cells. The nanobody modifications use highly reliable bioconjugation to a three-dimensional wireframe deoxyribonucleic acid (DNA) origami scaffold. Mechanistic studies suggest that inhibition is mediated by the DNA origami scaffold bound to the virus particle, which obstructs the internalization of the viruses into cells, and that inhibition is enhanced by avidity resulting from multivalent virus and scaffold interactions. The assembled nanostructures demonstrate negligible cytotoxicity (<10 nM) and sufficient stability, further supporting their therapeutic potential. If translatable to other viral species and epitopes, this approach may open a new strategy that leverages existing infrastructures – monoclonal antibody development, phage display, and in vitro evolution - for rapidly developing novel antivirals in vivo.
ContributorsPradhan, Swechchha (Author) / Hariadi, Rizal (Thesis advisor) / Hogue, Ian (Committee member) / Varsani, Arvind (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2022
171382-Thumbnail Image.png
Description
Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human

Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human MPXV cases. MPXV has been named the most important orthopoxvirus to infect humans since the eradication of smallpox and has been the causative agent of the 2022 world-wide MPXV outbreak. Despite being highly pathogenic, MPXV contains a natural truncation at the N-terminus of its E3 homologue. Vaccinia virus (VACV) E3 protein has two domains: an N- terminus Z-form nucleic acid binding domain (Z-BD) and a C-terminus double stranded RNA binding domain (dsRBD). Both domains are required for pathogenesis, interferon (IFN) resistance, and protein kinase R (PKR) inhibition. The N-terminus is required for evasion of Z-DNA binding protein 1 (ZBP1)-dependent necroptosis. ZBP1 binding to Z- form deoxyribonucleic acid/ribonucleic acid (Z-DNA/RNA) leads to activation of receptor-interacting protein kinase 3 (RIPK3) leading to mixed lineage kinase domain- like (MLKL) phosphorylation, aggregation and cell death. This study investigated how different cell lines combat MPXV infection and how MPXV has evolved ways to circumvent the host response. MPXV is shown to inhibit necroptosis in L929 cells by degrading RIPK3 through the viral inducer of RIPK3 degradation (vIRD) and by inhibiting MLKL aggregation. Additionally, the data shows that IFN treatment efficiently inhibits MPXV replication in a ZBP1-, RIPK3-, and MLKL- dependent manner, but independent of necroptosis. Also, the data suggests that an IFN inducer with a pancaspase or proteasome inhibitor could potentially be a beneficial treatment against MPXV infections. Furthermore, it reveals a link between PKR and pathogen-induced necroptosis that has not been previously described.
ContributorsWilliams, Jacqueline (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2022
Description

Understanding learning in fruit flies (D. melanogaster) can lead to many important discoveries about learning in humans due to the large overlap of shared DNA and the appearance of the same diseases in both species. Fruit flies have already been test subjects for many influential research experiments, some of which

Understanding learning in fruit flies (D. melanogaster) can lead to many important discoveries about learning in humans due to the large overlap of shared DNA and the appearance of the same diseases in both species. Fruit flies have already been test subjects for many influential research experiments, some of which earned Nobel Prizes. This study seeks to investigate inhibitory conditioning in a way that differs from the traditional forward pairing inhibitory conditioning. Specifically, this experiment aims to establish inhibitory learning in fruit flies using backward association. The results show that when fruit flies are trained using backward conditioning as opposed to forward conditioning, there is a pattern of preference that differs substantially from the results showing an aversion to the associated odor in forward conditioning. When comparing the data using Two-Factor ANOVA of forward versus backward conditioning, it clearly indicates that the results are significant. Simply by altering the temporal placement of an unconditioned stimulus and a conditioned stimulus, the fruit flies learn significantly differently, switching from an aversion to the paired odor to a preference. Based on these results, fruit flies can be considered capable of inhibitory learning via backward pairing. Further research will consider whether responses become stronger after more repetitions of the training, and summation and retardation tests can be done in order to confirm that the response is, in fact, due to inhibitory conditioning and not just habituation.

ContributorsLawrence, Heidi (Author) / Smith, Brian (Thesis director) / de Belle, John (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

In the face of widespread pollinator decline, research has increasingly focused on ways that pesticides could be harming bees. Fungicides are pesticides that are used in greater volumes than insecticides, yet significantly fewer studies have investigated the effects of these agrochemicals. The fungicide Pristine® is commonly used on bee-pollinated crops

In the face of widespread pollinator decline, research has increasingly focused on ways that pesticides could be harming bees. Fungicides are pesticides that are used in greater volumes than insecticides, yet significantly fewer studies have investigated the effects of these agrochemicals. The fungicide Pristine® is commonly used on bee-pollinated crops and has been shown to be detrimental to physiological processes that are key to honey bee foraging, such as digestion and learning. This study seeks to investigate how Pristine® exposure affects the amount of water, nectar, and pollen that honey bees collect. Colonies were fed either plain pollen patties or pollen patties containing 23 ppm Pristine®. Exposure to fungicide had no significant effect on corbicular pollen mass, the crop volumes of nectar or water foragers, or the proportions of foragers collecting different substances. There was a significantly higher sugar concentration in the crop of Pristine®-exposed nectar foragers (43.6%, 95% CI [38.8, 48.4]) compared to control nectar foragers (36.3%, 95% CI [31.9, 40.6]). The higher sugar concentration in the nectar of Pristine®-treated bees could indicate that the agrochemical decreases sucrose responsiveness or nutritional status in bees. Alternatively, fungicide exposure may increase the amount of sugar that bees need to make it back to the hive. Based on these results, it would appear that fungicides like Pristine® do not strongly affect the amounts of substances that honey bees collect, but it is still highly plausible that treated bees forage more slowly or with lower return rates.

ContributorsChester, Elise (Author) / Harrison, Jon (Thesis director) / DesJardins, Nicole (Committee member) / Smith, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05