Matching Items (77)
151272-Thumbnail Image.png
Description
In social insect colonies, as with individual animals, the rates of biological processes scale with body size. The remarkable explanatory power of metabolic allometry in ecology and evolutionary biology derives from the great diversity of life exhibiting a nonlinear scaling pattern in which metabolic rates are not proportional to mass,

In social insect colonies, as with individual animals, the rates of biological processes scale with body size. The remarkable explanatory power of metabolic allometry in ecology and evolutionary biology derives from the great diversity of life exhibiting a nonlinear scaling pattern in which metabolic rates are not proportional to mass, but rather exhibit a hypometric relationship with body size. While one theory suggests that the supply of energy is a major physiological constraint, an alternative theory is that the demand for energy is regulated by behavior. The central hypothesis of this dissertation research is that increases in colony size reduce the proportion of individuals actively engaged in colony labor with consequences for energetic scaling at the whole-colony level of biological organization. A combination of methods from comparative physiology and animal behavior were developed to investigate scaling relationships in laboratory-reared colonies of the seed-harvester ant, Pogonomyrmex californicus. To determine metabolic rates, flow-through respirometry made it possible to directly measure the carbon dioxide production and oxygen consumption of whole colonies. By recording video of colony behavior, for which ants were individually paint-marked for identification, it was possible to reconstruct the communication networks through which information is transmitted throughout the colony. Whole colonies of P. californicus were found to exhibit a robust hypometric allometry in which mass-specific metabolic rates decrease with increasing colony size. The distribution of walking speeds also scaled with colony size so that larger colonies were composed of relatively more inactive ants than smaller colonies. If colonies were broken into random collections of workers, metabolic rates scaled isometrically, but when entire colonies were reduced in size while retaining functionality (queens, juveniles, workers), they continued to exhibit a metabolic hypometry. The communication networks in P. californicus colonies contain a high frequency of feed-forward interaction patterns consistent with those of complex regulatory systems. Furthermore, the scaling of these communication pathways with size is a plausible mechanism for the regulation of whole-colony metabolic scaling. The continued development of a network theory approach to integrating behavior and metabolism will reveal insights into the evolution of collective animal behavior, ecological dynamics, and social cohesion.
ContributorsWaters, James S., 1983- (Author) / Harrison, Jon F. (Thesis advisor) / Quinlan, Michael C. (Committee member) / Pratt, Stephen C. (Committee member) / Fewell, Jennifer H. (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
136797-Thumbnail Image.png
Description
Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system

Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system workers and queens are determined by their genotype (i.e., workers develop from interlineage crosses, queens from intralineage crosses). As such, J1 and J2 lineages are dependent on each other in order for colonies to produce both workers and reproductive queens. Given their genetic isolation and interdependence, we hypothesized that the CHCs of alate males and queens are affected by lineage, and that differences in the CHC profile are used for mate recognition. We tested these hypotheses by analyzing the lineage distributions of actively mating pairs (n=65), and compared them with the overall distribution of male and female sexuals (n=180). We additionally analyzed the five most abundant CHC compounds for 20 of the actively mating P. barbatus alate male and queen pairs to determine how variable the two lineages are between each sex. We found that mating pair distributions did not significantly differ from those expected under a random mating system (�2= 1.4349, P= 0.6973), however, CHC profiles did differ between J1 and J2 lineages and sexes for the five most abundant CHC compounds. Our results show that random mating is taking place in this population, however given the differences observed in CHC profiles, mate recognition could be taking place.
ContributorsTula Del Moral Testai, Pedro Rafael (Co-author) / Cash, Elizabeth (Co-author) / Gadau, Juergen (Thesis director) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137061-Thumbnail Image.png
Description
I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic

I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic queens would have an advantage of cooperating together in reproducing more workers quicker than the other conditions to make up for the lost workers. This would demonstrate a benefit that pleometrosis has over haplometrosis for mature colonies, which would explain why pleometrosis continues for P.californicus after colony foundation. After removing all but twenty workers for every colony, I took pictures and counted the emerging brood for 52 days. Analyses showed that the paired pleometrotic queens and the haplometrotic queens both grew at an equally efficient rate and the paired pleometrotic and haplometrotic queens growing the least efficiently. However, the results were not significant and did not support the hypothesis that paired pleometrotic queens recover from worker loss more proficiently than other social systems.
ContributorsFernandez, Marisa Raquel (Author) / Fewell, Jennifer (Thesis director) / Gadau, Juergen (Committee member) / Haney, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor)
Created2014-05
137267-Thumbnail Image.png
Description
It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that

It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that come from the father, introduces more targets that can be manipulated to produce specific reproductive effects. Use of Drosophila melanogaster as a model to study reproduction has increased, in part, due to the use of the GAL4 system. In this system, the GAL4 gene encodes an 881 amino acid protein that binds to the 4-site Upstream Activating Sequence (UAS) to induce transcription of the gene of interest. These sequences constitute the two components of the system: the driver (GAL4) and the responder (gene of interest) \u2014 each of which is maintained as a separate parental line. Effects of the GAL4 driver line "driving" transcription of the responder can be assessed by examining the offspring. One of the more common uses of the GAL4 system involves analyzing phenotypic effects of reducing or eliminating expression of a target gene through the induction of RNAi transcription, which often results in toxicity, lethality, or reduced viability. Utilizing these principles, we strove to demonstrate the effect of knocking down the expression of testis-specific sperm-leucyl-aminopeptidases gene CG13340 on progeny by inducing expression of RNAi with two distinct GAL4 driver lines - one with a nonspecific actin-binding activation sequence and the other with a testis-specific activation sequence. Comparison of both GAL4 driver lines to crosses using N01 wild type ("wt") flies verify that inducing RNAi transcription using the GAL4 system results in reduction of proper offspring development. Further studies using D. melanogaster and the GAL4 system can improve knowledge of factors contributing to male fertility and also be applied to better understand mammalian, specifically human, fertility.
ContributorsEvans, Donna Marie (Author) / Karr, Timothy L. (Thesis director) / Roland, Kenneth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2014-05
137292-Thumbnail Image.png
Description
Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction

Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction of thelytokous parthenogenesis. This investigation was a characterization of the so-far unexamined Wolbachia infection of Pogonomyrmex ants. Five main questions were addressed: whether Wolbachia infection rates vary between North and South America, whether infection rates are dependent on host range, whether Wolbachia affects the caste determination of P. barbatus, whether infection rates in Pogonomyrmex are similar to those of other ants, and whether Wolbachia phylogeny parallels the phylogeny of its Pogonomyrmex hosts. Using PCR amplification of the wsp, ftsZ, and gatB loci, Wolbachia infections were detected in four of fifteen Pogonomyrmex species (26.7%), providing the first known evidence of Wolbachia infection in this genus. All infected species were from South America, specifically Argentina. Therefore, Wolbachia has no role in the caste determination of the North American species P. barbatus. Additionally, while it appears that the incidence of Wolbachia in Pogonomyrmex may be limited to South America, host range did not correlate with infection status. The incidence of Wolbachia in Pogonomyrmex as a whole was similar to that of invasive Solenopsis and Linepithema species, but not to Wasmannia auropunctata or Anoplolepis gracilipes, which retain Wolbachia infection in non-native locations. This suggests that there may be a parallel in Wolbachia infection spread in certain short-term models of species colonization and long-term models of genus radiation. Finally, there was no congruity between host and parasite phylogeny according to maximum likelihood analyses, necessarily due to horizontal transfer of Wolbachia between hosts and lateral gene transfer between Wolbachia strains within hosts.
ContributorsHarris, Alexandre Marm (Author) / Gadau, Juergen (Thesis director) / Martin, Thomas (Committee member) / Helmkampf, Martin Erik (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2014-05
148480-Thumbnail Image.png
Description

Members of the Delphinidae family are widely distributed across the world’s oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a

Members of the Delphinidae family are widely distributed across the world’s oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a novel polyomavirus (Polyomaviridae), three cressdnaviruses, and two genomoviruses (Genomoviridae). In the short-finned pilot whale we were able to identify one genomovirus in a kidney sample. The presence of unclassified cressdnavirus within two samples (muscle and kidney) of the same animal supports the possibility these viruses might be widespread within the animal. The orca polyomavirus identified here is the first of its species and is not closely related to the only other dolphin polyomavirus previously discovered. The identification and verification of these viruses expands the current knowledge of viruses that are associated with the Delphinidae family.

ContributorsSmith, Kendal Ryan (Author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Dolby, Greer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131078-Thumbnail Image.png
Description
Phage therapy has been around for more than a century, but has regained interest in the field of medicine and holds significant potential to act as a treatment against a deadly bacterial infection in various cactus species. It was discovered that bacteriophages isolated from soil samples of potato plants were

Phage therapy has been around for more than a century, but has regained interest in the field of medicine and holds significant potential to act as a treatment against a deadly bacterial infection in various cactus species. It was discovered that bacteriophages isolated from soil samples of potato plants were able to suppress Pectobacterium carotovorum, ‘Pectobacterium’ being within the family Pectobacteriaceae which contains the ‘Erwinia’ genus that causes soft rot diseases in various plants (Jones, 2012). The two scientists had co-inoculated “... the phage with the phytobacterium” (Jones, 2012) in order to suppress the growth and prevent the infection from occurring.
ContributorsFry, Danielle Elizabeth (Author) / Geiler-Samerotte, Kerry (Thesis director) / Pfeifer, Susanne (Committee member) / Varsani, Arvind (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131157-Thumbnail Image.png
Description
Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment.

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.
ContributorsSchreck, Joshua Reuben (Author) / Varsani, Arvind (Thesis director) / Rolf, Halden (Committee member) / Misra, Rajeev (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131689-Thumbnail Image.png
Description
Yellow-bellied marmots (Marmota flavivent) are semi-fossorial ground-dwelling sciurid rodents native to the western United States. They are facultatively social and live in colonies that may contain over 50 individuals. Marmot populations are well studied in terms of their diet, life cycle, distribution, and behavior, however, knowledge about viruses associated with

Yellow-bellied marmots (Marmota flavivent) are semi-fossorial ground-dwelling sciurid rodents native to the western United States. They are facultatively social and live in colonies that may contain over 50 individuals. Marmot populations are well studied in terms of their diet, life cycle, distribution, and behavior, however, knowledge about viruses associated with marmots is very limited. In this study we aim to identify DNA viruses by non-invasive sampling of their feces. Viral DNA was extracted from fecal material of 35 individual marmots collected in Colorado and subsequently submitted to rolling circle amplification for circular molecule enrichment. Using a viral metagenomics approach which included high-throughput sequencing and verification of viral genomes using PCR, cloning and sequencing, a diverse group of single-stranded (ss) DNA viruses were identified. Diverse ssDNA viruses were identified that belong to two established families, Genomoviridae (n=7) and Anelloviridae (n=1) and several others that belong to unclassified circular replication associated encoding single-stranded (CRESS) DNA virus groups (n=19). There were also circular DNA molecules extracted (n=4) that appear to encode one viral-like gene and are composed of <1545 nt. The viruses that belonged to the family Genomoviridae clustered with those in the Gemycircularvirus genus. The genomoviruses were extracted from 6 samples. These clustered with gemycircularvirus extracted from arachnids and feces. The anellovirus, extracted from one sample, identified here has a genome sequence that is most similar to those from other rodent species, lagomorphs, and mosquitos. The CRESS viruses identified here were extracted from 9 samples and are novel and cluster with others identified from avian species. This study gives a snapshot of viruses associated with marmots based on fecal sampling.
ContributorsKhalifeh, Anthony (Author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Dolby, Greer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132558-Thumbnail Image.png
Description
To date, there have been few, if any, studies evaluating the venom toxin levels in dogs that have been naturally envenomated by pit vipers. Understanding venom toxin pharmacokinetics in a clinical setting is important for a variety of reasons, including the potential to better elucidate treatment options, prognosis, and other

To date, there have been few, if any, studies evaluating the venom toxin levels in dogs that have been naturally envenomated by pit vipers. Understanding venom toxin pharmacokinetics in a clinical setting is important for a variety of reasons, including the potential to better elucidate treatment options, prognosis, and other factors associated with pit viper envenomation. In addition, dogs serve as a comparative species to humans for evaluating pit viper envenomations. This pilot study’s primary objective was to address the question of “What do we see?” in dogs presenting for rattlesnake envenomation. To answer this question, we obtained serum from envenomated dogs presenting at three veterinary clinics, then used enzyme-linked immunosorbent assay (ELISA) and western blot analysis to measure total venom and key toxins in sera. Phospholipase A2, a primary venom toxin, was identified in a few samples by the western blot, and contributed to the positive correlation between percent echinocytes in the blood and venom concentration. Medical data records were compared to venom concentrations measured using ELISA to determine whether there were any significant correlations. First, the hematological results were compared. Clotting times showed a strong positive correlation, clotting times and platelets showed a negative correlation, while echinocytes and platelets showed no correlation. When compared to venom concentration, clotting times showed a negative correlation, while age showed a positive correlation. Weight and platelets were also compared to venom concentration, but no significant correlations were found. The logistics of this study provided a real-world model where time elapsed between envenomation and hospital admission, thus giving a realistic look at what occurs in both animal and human medicine.
ContributorsNelson, Alexis (Co-author, Co-author) / DeNardo, Dale (Thesis director) / Woods, Craig (Thesis director) / Varsani, Arvind (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05