Matching Items (71)
157580-Thumbnail Image.png
Description
Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date,

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions (Centruroides sculpturatus) were collected in Phoenix. Novel viral genomes described here belong to the families Polyomaviridae, Anelloviridae, Genomoviridae, and a newly proposed family, Arthropolviridae.

Polyomaviruses are non-enveloped viruses with a small, circular double-stranded DNA (dsDNA) genomes that have been identified in a variety of mammals, birds and fish and are known to cause various diseases. Arthropolviridae is a proposed family of circular, large tumor antigen encoding dsDNA viruses that have a unidirectional genome organization. Genomoviruses and anelloviruses are ssDNA viruses that have circular genomes ranging in size from 2–2.4 kb and 2.1–3.8 kb, respectively. Genomoviruses are ubiquitous in the environment, having been identified in a wide range of animal, plant and environmental samples, while anelloviruses have been associated with a plethora of animals.

Here, 16 novel viruses are reported that span four viral families. Eight novel polyomaviruses were recovered from bark scorpions, three arthropolviruses were recovered from dog ticks and one arthropolvirus from a hairy scorpion. Viruses belonging to the families Polyomaviridae and Arthropolviridae are highly divergent. This is the first more extensive study of these viruses in arachnids. Three genomoviruses were recovered from both dog and deer ticks and one anellovirus was recovered from deer ticks, which are the first records of these viruses being recovered from ticks. This work highlights the diversity of dsDNA and ssDNA viruses in the arachnid population and emphasizes the importance of performing viral surveys on these populations.
ContributorsSchmidlin, Kara (Author) / Varsani, Arvind (Thesis advisor) / Van Doorslaer, Koenraad (Committee member) / Stenglein, Mark (Committee member) / Arizona State University (Publisher)
Created2019
153154-Thumbnail Image.png
Description
During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological

During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological organization. For some this topic remains contentious, while others consider the debate settled, even while disagreeing about when and how resolution occurred, raising the question: "Why have these debates continued?"

Here I explore the biology, history, and philosophy of the possibility of natural selection operating at levels of biological organization other than the organism by focusing on debates about group-level selection that have occurred since the 1960s. In particular, I use experimental, historical, and synthetic methods to review how the debates have changed, and whether different uses of the same words and concepts can lead to different interpretations of the same experimental data.

I begin with the results of a group-selection experiment I conducted using the parasitoid wasp Nasonia, and discuss how the interpretation depends on how one conceives of and defines a "group." Then I review the history of the group selection controversy and argue that this history is best interpreted as multiple, interrelated debates rather than a single continuous debate. Furthermore, I show how the aspects of these debates that have changed the most are related to theoretical content and empirical data, while disputes related to methods remain largely unchanged. Synthesizing this material, I distinguish four different "approaches" to the study of multilevel selection based on the questions and methods used by researchers, and I use the results of the Nasonia experiment to discuss how each approach can lead to different interpretations of the same experimental data. I argue that this realization can help to explain why debates about group and multilevel selection have persisted for nearly sixty years. Finally, the conclusions of this dissertation apply beyond evolutionary biology by providing an illustration of how key concepts can change over time, and how failing to appreciate this fact can lead to ongoing controversy within a scientific field.
ContributorsDimond, Christopher C (Author) / Collins, James P. (Thesis advisor) / Gadau, Juergen (Committee member) / Laubichler, Manfred (Committee member) / Armendt, Brad (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2014
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018
155980-Thumbnail Image.png
Description
An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups

An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups formed by primary polygyny have profound effects on the social dynamics and inclusive fitness benefits within a colony. Despite this, the evolution of non-kin queen cooperation has been relatively overlooked in considerations of the evolution of cooperative sociality. To date, studies examining the costs and benefits of primary polygyny have focused primarily on the advantages of multiple queens during colony founding and early growth, but the impact of their presence extends to colony maturity and reproduction.

In this dissertation, I evaluate the ecological drivers and fitness consequences of non-kin queen cooperation, by comparing the reproduction of mature single-queen versus polygynous harvester ant (Pogonomyrmex californicus) colonies in the field. I captured and quantified the total number and biomass of reproductives across multiple mating seasons, comparing between populations that vary in the proportion of single queen versus polygynous colonies, to assess the fitness outcomes of queen cooperation. Colonies in a mainly polygynous site had lower reproductive investment than those in sites with predominantly single-queen colonies. The site dominated by polygyny had higher colony density and displayed evidence of resource limitation, pressures that may drive the evolution of queen cooperation.

I also used microsatellite markers to examine how polygynous queens share worker and reproductive production with nest-mate queens. The majority of queens fairly contribute to worker production and equally share reproductive output. However, there is a low frequency of queens that under-produce workers and over-produce reproductive offspring. This suggests that cheating by reproducing queens is possible, but uncommon. Competitive pressure from neighboring colonies could reduce the success of colonies that contain cheaters and maintain a low frequency of this phenotype in the population.
ContributorsHaney, Brian R (Author) / Fewell, Jennifer H (Thesis advisor) / Cole, Blaine J. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Rutowski, Ron L (Committee member) / Arizona State University (Publisher)
Created2017
157664-Thumbnail Image.png
Description
One of the single-most insightful, and visionary talks of the 20th century, “There’s plenty of room at the bottom,” by Dr. Richard Feynman, represented a first foray into the micro- and nano-worlds of biology and chemistry with the intention of direct manipulation of their individual components. Even so, for decades

One of the single-most insightful, and visionary talks of the 20th century, “There’s plenty of room at the bottom,” by Dr. Richard Feynman, represented a first foray into the micro- and nano-worlds of biology and chemistry with the intention of direct manipulation of their individual components. Even so, for decades there has existed a gulf between the bottom-up molecular worlds of biology and chemistry, and the top-down world of nanofabrication. Creating single molecule nanoarrays at the limit of diffraction could incentivize a paradigm shift for experimental assays. However, such arrays have been nearly impossible to fabricate since current nanofabrication tools lack the resolution required for precise single-molecule spatial manipulation. What if there existed a molecule which could act as a bridge between these top-down and bottom-up worlds?

At ~100-nm, a DNA origami macromolecule represents one such bridge, acting as a breadboard for the decoration of single molecules with 3-5 nm resolution. It relies on the programmed self-assembly of a long, scaffold strand into arbitrary 2D or 3D structures guided via approximately two hundred, short, staple strands. Once synthesized, this nanostructure falls in the spatial manipulation regime of a nanofabrication tool such as electron-beam lithography (EBL), facilitating its high efficiency immobilization in predetermined binding sites on an experimentally relevant substrate. This placement technology, however, is expensive and requires specialized training, thereby limiting accessibility.

The work described here introduces a method for bench-top, cleanroom/lithography-free, DNA origami placement in meso-to-macro-scale grids using tunable colloidal nanosphere masks, and organosilane-based surface chemistry modification. Bench-top DNA origami placement is the first demonstration of its kind which facilitates precision placement of single molecules with high efficiency in diffraction-limited sites at a cost of $1/chip. The comprehensive characterization of this technique, and its application as a robust platform for high-throughput biophysics and digital counting of biomarkers through enzyme-free amplification are elucidated here. Furthermore, this technique can serve as a template for the bottom-up fabrication of invaluable biophysical tools such as zero mode waveguides, making them significantly cheaper and more accessible to the scientific community. This platform has the potential to democratize high-throughput single molecule experiments in laboratories worldwide.
ContributorsShetty, Rishabh Manoj (Author) / Hariadi, Rizal F (Thesis advisor) / Gopinath, Ashwin (Committee member) / Varsani, Arvind (Committee member) / Nikkhah, Mehdi (Committee member) / Tillery, Stephen H (Committee member) / Hu, Ye (Committee member) / Arizona State University (Publisher)
Created2019
158793-Thumbnail Image.png
Description
The human papillomavirus (HPV) is a double-stranded DNA virus responsible for causing upwards of 80% of head and neck cancers in the oropharyngeal region. Current treatments, including surgery, chemotherapy, and/or radiation, are aggressive and elicit toxic effects. HPV is a pathogen that expresses viral-specific oncogenic proteins that play a role

The human papillomavirus (HPV) is a double-stranded DNA virus responsible for causing upwards of 80% of head and neck cancers in the oropharyngeal region. Current treatments, including surgery, chemotherapy, and/or radiation, are aggressive and elicit toxic effects. HPV is a pathogen that expresses viral-specific oncogenic proteins that play a role in cancer progression. These proteins may serve as potential targets for immunotherapeutic applications. Engineered T cell receptor (TCR) therapy may be an advantageous approach for HPV-associated cancers. In TCR therapy, TCRs are modified to express a receptor that is specific to an immunogenic antigen (part of the virus/cancer capable of eliciting an immune response). Since HPV-associated oropharyngeal cancers typically express unique viral proteins, it is important to identify the TCRs capable of recognizing these proteins. Evidence supports that head and neck cancers typically experience high levels of immune cell infiltration and are subsequently associated with increased survival rates. Most of the immune cell infiltrations in HPV+ HNSCC are CD8+ T lymphocytes, drawing attention to their prospective use in cellular immunotherapies. While TCRs are highly specific, the TCR repertoire is extremely diverse; enabling the immune system to fight off numerous pathogens. In project 1, I review approaches to analyzing TCR diversity and explore the use of DNA origami in retrieving paired TCR sequences from a population. The results determine that DNA origami can be used within a monoclonal population but requires further optimization before being applied in a polyclonal setting. In project 2, I investigate HPV-specific T-cell dysfunction; I detect low frequency HPV-specific CD8+ T cells, determine that they are tumor specific, and show that HPV+HNSCC patients exhibit increased epitope-specific levels of CD8+T cell exhaustion. In project 3, I apply methods to expand and isolate TCRαβ sequences derived from donors stimulated with a previously identified HPV epitope. Single-cell analysis provide ten unique TCRαβ pairs with corresponding CDR3 sequences that may serve as therapeutic candidates. This thesis contributes to fundamental immunology by contributing to the knowledge of T cell dysfunction within HPV+HNSCC and further reveals TCR gene usage within an HPV stimulated population, thus identifying potential TCR pairs for adoptive cell therapies.
ContributorsUlrich, Peaches Rebecca (Author) / Anderson, Karen S (Thesis advisor) / Lake, Douglas (Committee member) / Maley, Carlo (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2020
161521-Thumbnail Image.png
Description
Viruses infect organisms in all domains of life and are abundant entities in ecosystems. In particular, single-stranded DNA viruses have been found in a wide variety of hosts and ecosystems. Using a metagenomic approach, novel circular viruses have been identified in multiple environmental samples. This thesis focuses on viruses and

Viruses infect organisms in all domains of life and are abundant entities in ecosystems. In particular, single-stranded DNA viruses have been found in a wide variety of hosts and ecosystems. Using a metagenomic approach, novel circular viruses have been identified in multiple environmental samples. This thesis focuses on viruses and virus dynamics from avian sources. As part of this thesis, a novel phapecoctavirus was identified in a pigeon cloacal swab. The phapecoctavirus is most closely related to Klebsiella phage ZCKP1, identified from a freshwater sample. Beyond this, this thesis addresses circoviruses, which are of interest due to disease they cause to avian species. Evolution of circovirus recombination was studied in a closed system of uninfected and infected pigeons. 178 genomes of pigeon circovirus were sequenced, and patterns of recombination determined. Seven genotypes were present in the population and genotype 4 was shown to be present in a majority of samples after the experiment was finished. Circoviruses were also identified in waterfowl feces and the ten genomes recovered represent two new circovirus species. Overall, the research described in this thesis helped to gain a deeper understanding of the diversity and evolution of circular DNA viruses associated with avian species.
ContributorsKhalifeh, Anthony (Author) / Varsani, Arvind (Thesis advisor) / Kraberger, Simona J (Committee member) / Dolby, Greer (Committee member) / Arizona State University (Publisher)
Created2021
161438-Thumbnail Image.png
Description
The family Cactaceae is extremely diverse and has a near global distribution yet very little has been described regarding the community of viruses that infect or are associated with cacti. This research characterizes the diversity of viruses associated with Cactaceae plants and their evolutionary aspects. Five viruses belonging to the

The family Cactaceae is extremely diverse and has a near global distribution yet very little has been described regarding the community of viruses that infect or are associated with cacti. This research characterizes the diversity of viruses associated with Cactaceae plants and their evolutionary aspects. Five viruses belonging to the economically relevant plant virus family Geminiviridae were identified, initially, two novel divergent geminiviruses named Opuntia virus 1 (OpV1) and Opuntia virus 2 (OpV2) and Opuntia becurtovirus, a new strain within the genus Becurtovirus. These three viruses were also found in co-infection. In addition, two known geminiviruses, the squash leaf curl virus (SLCV) and watermelon chlorotic stunt virus (WCSV) were identified infecting Cactaceae plants and other non-cactus plants in the USA and Mexico. Both SLCV and WCSV are known to cause severe disease in cultivated Cucurbitaceae plants in the USA and Middle East, respectively. This study shows that WCSV was introduced in the America two times, and it is the first identification of this virus in the USA, demonstrating is likely more widespread in North America. These findings along with the Opuntia becurtovirus are probable events of spill-over in agro-ecological interfaces. A novel circular DNA possibly bipartite plant-infecting virus that encodes protein similar to those of geminiviruses was also identified in an Opuntia discolor plant in Brazil, named utkilio virus, but it is evolutionary distinct likely belonging to a new taxon. Viruses belonging to the ssDNA viral family Genomoviridae are also described and those thus far been associated with fungi hosts, so it is likely the ones identified in plants are associated with their phytobiome. Overall, the results of this project provide a molecular and biological characterization of novel geminiviruses and genomoviruses associated with cacti as well as demonstrate the impact of agro-ecological interfaces in the spread of viruses from or to native plants. It also highlights the importance of viral metagenomics studies in exploring virus diversity and evolution given then amount of virus diversity identified. This is important for conservation and management of cacti in a global scale, including the relevance of controlled movement of plants within countries.
ContributorsSalgado Fontenele, Rafaela (Author) / Varsani, Arvind (Thesis advisor) / Wilson, Melissa (Committee member) / Majure, Lucas (Committee member) / Van Doorslaer, Koenraad (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2021
129370-Thumbnail Image.png
Description

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species.

ContributorsSchrader, Lukas (Author) / Kim, Jay W. (Author) / Ence, Daniel (Author) / Zimin, Aleksey (Author) / Klein, Antonia (Author) / Wyschetzki, Katharina (Author) / Weichselgartner, Tobias (Author) / Kemena, Carsten (Author) / Stoekl, Johannes (Author) / Schultner, Eva (Author) / Wurm, Yannick (Author) / Smith, Christopher D. (Author) / Yandell, Mark (Author) / Heinze, Juergen (Author) / Gadau, Juergen (Author) / Oettler, Jan (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
128691-Thumbnail Image.png
Description

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean.

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.

ContributorsWu, Jieying (Author) / Gao, Weimin (Author) / Johnson, Roger (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-11