Matching Items (88)
134985-Thumbnail Image.png
Description
Adrenocortical carcinoma (ACC) is a rare and deadly disease that affects 0.5-2 people per million per year in the US. Currently, the first line clinical management includes surgical resection, followed by treatment with the chemotherapeutic agent mitotane. These interventions, however, have limited effectiveness, as the overall five-year survival rate of

Adrenocortical carcinoma (ACC) is a rare and deadly disease that affects 0.5-2 people per million per year in the US. Currently, the first line clinical management includes surgical resection, followed by treatment with the chemotherapeutic agent mitotane. These interventions, however, have limited effectiveness, as the overall five-year survival rate of patients with ACC is less than 35%. Therefore, further scientific investigation underlying the molecular mechanisms and biomarkers of this disease is of high importance. The aim of this project was to identify potential biomarkers that may be used as prognosticators as well as candidate genes that might be targeted to develop new therapies for patients with ACC. An analysis of publicly-available datasets revealed PDZ-binding kinase (PBK) as being upregulated roughly 9-fold in ACC tissue compared to normal adrenal tissue. PBK has been implicated as an oncogene in several other systems, and its expression has been shown to negatively impact patient survival. Initial experiments have confirmed the upregulation of PBK in H295R cells, a human ACC cell line. We effectively silenced PBK (>95% reduction in protein content) in H295R cells using lentiviral shRNA constructs. Using high and low PBK expressing cells, we performed soft agar assays for colony formation, and found that the PBK-silenced cells produced two-fold fewer colonies than the vector control (p<0.05). This indicates that PBK likely plays a role in tumorigenicity. We further conducted functional studies for apoptosis and proliferation to elucidate the mechanism by which PBK increases tumorigenicity. Preliminary results from MTS assays showed that after 9 days, PBK-silenced cells proliferated significantly less than the vector control, so PBK likely increases proliferation. Together these data identify PBK as a kinase implicated in ACC tumorigenesis. Further in vitro and in vivo studies will be conducted to evaluate PBK as a potential therapeutic target in adrenocortical carcinoma.
ContributorsRazzaghi, Raud (Author) / Wilson-Rawls, Jeanne (Thesis director) / Anderson, Karen (Committee member) / Katja, Kiseljak-Vassiliades (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134162-Thumbnail Image.png
Description
Insects have intricate systems they depend on for survival. They live in societies where every individual plays an important role. Ants are a great example of this observation. They are known for having structurally sound societies that ensure the livelihood of the colony. The ant species analyzed for this research,

Insects have intricate systems they depend on for survival. They live in societies where every individual plays an important role. Ants are a great example of this observation. They are known for having structurally sound societies that ensure the livelihood of the colony. The ant species analyzed for this research, Harpegnathos saltator, portrays a structured colony and serves as a useful example of levels of hierarchy. In the colony of H. saltator, one can find a queen, gamergates, workers, and male ants living underground in Southern India. Recording and analyzing egg-laying rates are important in this study because of the amount of information it provides. It is used especially when observing the relationship among the gamergates in colonies with varying colony sizes. Three different methods were used to record the egg-laying rates, each providing insight into valuable information. Results show that the smaller colonies with fewer identified gamergates do share an equal amount of egg-laying. In larger colonies, it appears that there are more active identified gamergates than others. Egg-laying duration times are smaller in colonies with fewer gamergates. It is also found that the presence of brood does not affect egg-laying rates and reproductive inhibition could be a possibility based on two of the colonies observed F65 and F21. Based on the data found, a more active colony that attempts to maintain stability by demonstrating aggression may be affecting the reproduction of gamergates. Future work that would further strengthen the research and conclusions made would involve further observation of colonies, both large and small, with varying numbers of gamergates. More observation involving behavior among gamergates and workers would also be beneficial. Mathematical modeling could also be incorporated to create equations that could determine information about colonies based on size, number of gamergates, and egg-laying rates.
ContributorsMayoral, Alejandra (Author) / Kang, Yun (Thesis director) / Liebig, Juergen (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135304-Thumbnail Image.png
Description
Duchenne Muscular Dystrophy (DMD) is a muscular degenerative disease characterized by striated membrane instability that stimulates continuous cycles of muscle repair. Chronic activation of the innate immune response necessary for muscle repair leads to a pathological accumulation of fibrotic materials that disrupt muscle function. During healthy tissue repair, a balance

Duchenne Muscular Dystrophy (DMD) is a muscular degenerative disease characterized by striated membrane instability that stimulates continuous cycles of muscle repair. Chronic activation of the innate immune response necessary for muscle repair leads to a pathological accumulation of fibrotic materials that disrupt muscle function. During healthy tissue repair, a balance between pro-inflammatory macrophage (M1) and anti-inflammatory macrophage (M2) promotes clearance of necrotic fibers (myolysis) followed by tissue repair. This is regulated by an intricate feedback loop between muscle, neutrophils and macrophages mediated by Th1 and Th2 cytokines and chemokines. During chronic inflammation, there is an imbalance in an M2 species that produces high levels of extracellular matrix that leads to fibrosis. Finding treatments that ameliorate fibrosis are essential to limiting the muscle pathology that reduces ambulation of DMD patients. Previous studies have shown that Mohawk, (Mkx) a homeobox transcription factor, is essential for the initiation of the inflammation response during acute muscle injury. This study aims to examine whether Mkx regulates inflammation during chronic damage associated with muscular dystrophy. The mdx mouse is a well-studied mouse model that recapitulates muscle necrosis, chronic inflammatory response and fibrosis associated with muscular dystrophy. Utilizing quantitative RT-PCR and histological analysis, the diaphragms and Quadriceps of adult Mkx-/-/mdx and Mkx+/+/mdx mice were analyzed at three critical time points (4 weeks, 3 months and 7 months). In contrast to what was anticipated, there was evidence of increased muscle damage in the absence of Mkx. There was a consistent reduction in the diameter of muscle fibers found in both types of tissue in Mkx-/-/mdx versus Mkx+/+/mdx mice without a difference in the number of fibers with centralized nuclei at 4 weeks and 1 year between the two genotypes, suggesting that the Mkx mutation influences the maturation of fibers forming in response to muscle damage. Fibrosis was higher in the diaphragm of the Mkx-/-/mdx mice at 4 weeks and 3 months, while at1 year there did not appear to be a difference. Overall, the results predict that the absence of Mkx exacerbates the instability of muscle fibers in the mdx mouse. Future studies will be needed to understand the relationship between Mkx and the dystrophin gene.
ContributorsMasson, Samantha Ashley (Author) / Rawls, Alan (Thesis director) / Wilson-Rawls, Jeanne (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
160701-Thumbnail Image.png
Description

Insects are able to navigate their environments because they can detect hydrocarbons and volatile odors, but it is not clear which one has the fastest reaction when detected, or how much of a response can be produced due to either one. In order to determine which category of odorant is

Insects are able to navigate their environments because they can detect hydrocarbons and volatile odors, but it is not clear which one has the fastest reaction when detected, or how much of a response can be produced due to either one. In order to determine which category of odorant is detected first as well as which one causes the highest response rate, data on electrophysiological responses from ants was analyzed. While the statistical tests can be done to understand and answer the questions raised by the study, there are various hydrocarbons and volatile odors that were not used in the data. Conclusive evidence only applies to the odorants used in the experiments.

ContributorsDarden, Jaelyn (Author) / Gerkin, Richard (Thesis director) / Liebig, Juergen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
171548-Thumbnail Image.png
Description
Skeletal muscle can intrinsically repair itself in response to injury. This repair process has been shown to be mediated through signaling of the innate immune system. The immune response caused during repair helps to clear away debris in damage and promotes the activation and proliferation of muscle stem cells (MuSCs)

Skeletal muscle can intrinsically repair itself in response to injury. This repair process has been shown to be mediated through signaling of the innate immune system. The immune response caused during repair helps to clear away debris in damage and promotes the activation and proliferation of muscle stem cells (MuSCs) that will repair the damage muscle. Dysregulation of this inflammation leads to fibrosis and decreased efficacy of the repair process. Despite the requirement of inflammatory signaling during muscle repair, muscle’s contribution during inflammation as only recently started to be explored. The objective of this dissertation is to assess the contribution of muscle in the early inflammatory response during repair as well attempting to modulate this inflammation during disease to ameliorate disease pathology in a model of Duchenne’s muscular dystrophy. I tested the hypotheses that 1) muscle is an active participant in the early inflammatory response, 2) the transcription factor Mohawk (Mkx) is a regulator of the early inflammatory response and, 3) If this inflammation can be modulated with a virally derived serine protease inhibitor in a model of muscle disrepair and chronic inflammation. I found that muscle is actively participating in the establishment early inflammation in repair through the production of chemokines used to promote infiltration of immune cells. As well as the identification of a new muscle subtype that produces more chemokines compared to the average MuSC and upregulated genes in the Interferon signaling pathway. I also discovered that presence of this muscle subtype is linked to the expression of Mkx. In Mkx null mice this population is not present, and these cells are deficient in chemokine expression compared to WT mice. I subsequently found that, using the myxomavirus derived serine protease inhibitor, Serp-1 I was able to modulate the chronic inflammation that is common in those affected with Duchenne’s muscular dystrophy (DMD) utilizing a high-fidelity mouse model of the disease. The result of this dissertation provides an expanded role for muscle in inflammation and gives a potential new class of therapeutics to be used in disease associated with chronic inflammation.
ContributorsAndre, Alex (Author) / Rawls, Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Lake, Doug (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2022
Description

Staufen is a double-stranded RNA binding protein (dsRBP) with discovered homologs in a diverse range of animals, insects, and other multicellular organisms. Staufen acts on secondary structures in mRNA transcripts to modulate translation of many targets through several mechanisms of action. It has roles in microtubule-dependent subcellular localization of mRNA

Staufen is a double-stranded RNA binding protein (dsRBP) with discovered homologs in a diverse range of animals, insects, and other multicellular organisms. Staufen acts on secondary structures in mRNA transcripts to modulate translation of many targets through several mechanisms of action. It has roles in microtubule-dependent subcellular localization of mRNA transcripts, translational activation, transcript stability, Staufen-mediated mRNA decay (SMD), is a known component of RNA granules, and has been implicated in several cellular processes, one being myogenesis. Mammals have two Staufen orthologs–Staufen1 and Staufen2. Staufen1 has four conserved dsRNA binding domains (dsRBDs), each with distinct functional characteristics. This study finds that cultured MuSCs show distinct patterns of Staufen1 transcriptional expression from quiescence throughout the myogenic differentiation program characterized by high expression in quiescent satellite cells, less expression in proliferating myoblasts, and fairly high, sustained expression throughout differentiation and myotube formation. The temporal expression pattern is compared with recently reported novel Staufen1 functions in myogenesis. This research highlights that Staufen1 is able to act on transcripts in several overlapping ways to assist in the regulation of myogenesis, and more extensive characterization of Staufen1 as well as high-confidence identification of Staufen binding sites (SBS), will be necessary to fit Staufen1 into a model of translational regulation in myogenesis.

ContributorsLiakos, Nicholas (Author) / Wilson-Rawls, Jeanne (Thesis director) / Diviak, Bridget (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

Although social hierarchies are commonly found all throughout nature, the underlying mechanisms of their formation are still ambiguous. Hierarchies form through a wide range of interactions between subordinate and dominant individuals, and the ponerine ant Harpegnathos saltator provides the perfect model to explore such dominance behaviors. When the queen is

Although social hierarchies are commonly found all throughout nature, the underlying mechanisms of their formation are still ambiguous. Hierarchies form through a wide range of interactions between subordinate and dominant individuals, and the ponerine ant Harpegnathos saltator provides the perfect model to explore such dominance behaviors. When the queen is absent or her fecundity levels drop below a certain threshold, H. saltator workers undergo a dominance tournament, in which several individuals emerge as gamergates, reproductive workers that are not queens. During this tournament, several characterizable dominance behaviors are exhibited (antennal dueling, dominance biting, and policing), which can be used to study the behavioral and social dynamics in the formation of a reproductive hierarchy. Colonies of 15, 30, 60, and 120 workers were created in duplicate, and their dominance tournaments were recorded to study how these interactions impact gamergate establishment. Rather than studying these behaviors as isolated incidents, responses to policing behaviors (timid, neutral, or aggressive) and their duration were recorded along with the frequency of dueling. Three groups were determined: dueling future gamergates (DFG), dueling future non-gamergates (DFNG) and non-dueling individuals (ND). DFNG received many more policing attacks and the duration of these interactions lasted much longer. DFG consistently exhibited the most dueling. Timid and neutral responses were more common than aggressive responses, perhaps due to energy conversation purposes. Peaks in dueling correspond to peaks in policing, highlighting the dynamic behavioral interactions necessary for the formation of a reproductive hierarchy.

ContributorsOlivas, Victoria (Author) / Liebig, Juergen (Thesis director) / Shaffer, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
187431-Thumbnail Image.png
Description
MicroRNAs (miRNAs) are 17-22 nucleotide non-coding RNAs that regulate gene expression by targeting non-complementary elements in the 3’ untranslated regions (3’UTRs) of mRNAs. miRNAs, which form complex networks of interaction that differ by tissue and developmental stage, display conservation in their function across metazoan species. Yet much remains unknown regarding

MicroRNAs (miRNAs) are 17-22 nucleotide non-coding RNAs that regulate gene expression by targeting non-complementary elements in the 3’ untranslated regions (3’UTRs) of mRNAs. miRNAs, which form complex networks of interaction that differ by tissue and developmental stage, display conservation in their function across metazoan species. Yet much remains unknown regarding their biogenesis, localization, strand selection, and their absolute abundance due to the difficulty of detecting and amplifying such small molecules. Here, I used an updated HT qPCR-based methodology to follow miRNA expression of 5p and 3p strands for all 190 C. elegans miRNAs described in miRBase throughout all six developmental stages in triplicates (total of 9,708 experiments), and studied their expression levels, tissue localization, and the rules underlying miRNA strand selection. My study validated previous findings and identified novel, conserved patterns of miRNA strand expression throughout C. elegans development, which at times correlate with previously observed developmental phenotypes. Additionally, my results highlighted novel structural principles underlying strand selection, which can be applied to higher metazoans. Though optimized for use in C. elegans, this method can be easily adapted to other eukaryotic systems, allowing for more scalable quantitative investigation of miRNA biology and/or miRNA diagnostics.
ContributorsMeadows, Dalton Alexander (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Murugan, Vel (Committee member) / Wilson-Rawls, Jeanne (Committee member) / Arizona State University (Publisher)
Created2023
Description
The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are

The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are very anoxia-tolerant relative to mammals, with adults able to survive 12 h of anoxia, and represent a well-suited model for studying anoxia tolerance. Drosophila live in rotting, fermenting media and a result are more likely to experience environmental hypoxia; therefore, they could be expected to be more tolerant of anoxia than adults. However, adults have the capacity to survive anoxic exposure times ~8 times longer than larvae. This dissertation focuses on understanding the mechanisms responsible for variation in survival from anoxic exposure in the genetic model organism, Drosophila melanogaster, focused in particular on effects of developmental stage (larval vs. adults) and within-population variation among individuals.

Vertebrate studies suggest that surviving anoxia requires the maintenance of ATP despite the loss of aerobic metabolism in a manner that prevents a disruption of ionic homeostasis. Instead, the abilities to maintain a hypometabolic state with low ATP and tolerate large disturbances in ionic status appear to contribute to the higher anoxia tolerance of adults. Furthermore, metabolomics experiments support this notion by showing that larvae had higher metabolic rates during the initial 30 min of anoxia and that protective metabolites were upregulated in adults but not larvae. Lastly, I investigated the genetic variation in anoxia tolerance using a genome wide association study (GWAS) to identify target genes associated with anoxia tolerance. Results from the GWAS also suggest mechanisms related to protection from ionic and oxidative stress, in addition to a protective role for immune function.
ContributorsCampbell, Jacob B (Author) / Harrison, Jon F. (Thesis advisor) / Gadau, Juergen (Committee member) / Call, Gerald B (Committee member) / Sweazea, Karen L (Committee member) / Rosenberg, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
156764-Thumbnail Image.png
Description
Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine

Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine glands, the proper development and function of these glands are vital to colony dynamics. In this thesis, I present a study of the developmental ontogeny of the exocrine glands found in the head of the honey bee. In Chapter 2, I elucidate how the larval salivary gland transitions to an adult salivary gland through apoptosis and cell growth, differentiation and migration. I also explain the development of the hypopharyngeal and the mandibular gland using apoptotic markers and cytoskeletal markers like tubulin and actin. I explain the fundamental developmental plan for the formation of the glands and show that apoptosis plays an important role in the transformation toward an adult gland.
ContributorsNath, Rachna (Author) / Gadau, Juergen (Thesis advisor) / Rawls, Alan (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2018