Matching Items (88)
132424-Thumbnail Image.png
Description
The highly conserved Notch signaling pathway regulates cell-cell communication pathways, cell fate, cell determination, cell death, embryonic development, and adult tissue pathways in metazoans. The Notch receptors and ligands that bind to Notch are single pass, transmembrane proteins that communicate cell to cell via juxtacrine signaling. There are reports of

The highly conserved Notch signaling pathway regulates cell-cell communication pathways, cell fate, cell determination, cell death, embryonic development, and adult tissue pathways in metazoans. The Notch receptors and ligands that bind to Notch are single pass, transmembrane proteins that communicate cell to cell via juxtacrine signaling. There are reports of the divergent function and localization of the Deltalike 3 (Dll3) ligand. In Mus musculus (an eutherin mammal) the DLL3 protein inhibits the Notch signaling pathway and is localized in the Golgi apparatus. In contrast, the DLL3 protein from zebrafish, Danio rerio (a teleost) activates Notch and is located on the cell surface. This study will focus on examining the evolutionary pathway/evolutionary similarities, localization, and function of the A. carolinensis dll3 gene in comparison to other vertebrate species. This is important because there is not much known about the evolutionary divergence of the DLL3 A. carolinensis protein, its function in Notch signaling, and its subcellular localization.
Evolutionary analysis of vertebrate DLL3 protein sequences using phylogenetic trees showed that D. rerio and A. carolinensis are more evolutionarily similar in comparison to M. musculus suggesting that they may have similar intracellular localization. However, immunofluorescence staining experiments showed that the A. carolinensis DLL3 protein co-localized significantly with an endoplasmic reticulum (ER) specific primary antibody. Since this protein is localized in the secretory system, similar to that of M. musculus DLL3, it suggests that its function is to inhibit the Notch signaling pathway. Protein sequence alignments were created that suggested that there is a region in the protein sequences where the lizard and mouse sequence are conserved, while the zebrafish sequence simultaneously varies. This region of the amino acid sequence could be responsible for the difference in localization and function of the protein in these two species.
ContributorsBoschi, Alexis (Author) / Wilson-Rawls, Jeanne (Thesis director) / Newbern, Jason (Committee member) / Wilson Sayres, Melissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132429-Thumbnail Image.png
Description
In vitro gametogenesis (IVG) research has been growing in countries like Japan, US, and China after the development of stem cell research and other scientific advancements as well as because of the perception of infertility as a domestic and international problem. IVG research’s progress has been deliberated internationally, with discussion

In vitro gametogenesis (IVG) research has been growing in countries like Japan, US, and China after the development of stem cell research and other scientific advancements as well as because of the perception of infertility as a domestic and international problem. IVG research’s progress has been deliberated internationally, with discussion of questions, challenges, and possibilities that have arisen and may arise in the future as the technology is adopted by different countries. The first section introduces the meaning of IVG, explains the importance of review by scientists and citizens for IVG, and describes a rise in infertility reported in multiple developed countries that could be addressed by IVG. The second section discusses IVG’s applications and implications using 5 ethical categories articulated by Obama’s Presidential Commission for the Study of Bioethical Issues: Public Beneficence, Responsible Stewardship, Intellectual Freedom and Responsibility, Democratic Deliberation, and Justice and Fairness. These five ethical principles were intended for analysis of emerging technologies, and IVG is an emerging technology with possible integration into clinical settings. Among the principles, it seemed that a major weak point of inquiry concerns LGBT+ and disability inclusion, especially of gender dysphoric and transgender people who may experience higher rates of infertility and have a harder time conceiving due to a mix of discrimination, gender dysphoria, and infertility due to hormone replacement therapy (HRT) treatment or gender/sex reassignment surgeries (GRSs/SRSs) that may impair or remove reproductive body parts. A number of other ethical considerations arise about this technology.
ContributorsVillarreal, Lance Edward (Author) / Maienschein, Jane (Thesis director) / Ellison, Karin (Committee member) / Wilson-Rawls, Jeanne (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132080-Thumbnail Image.png
Description
The Numb gene encodes an adaptor protein that has been shown to play a role in muscle repair, cell proliferation, and the determination of cell fate in satellite cells. Ablation of this gene in satellite cells results in an up-regulation of myostatin and p21, which inhibit the proliferation of myoblasts.

The Numb gene encodes an adaptor protein that has been shown to play a role in muscle repair, cell proliferation, and the determination of cell fate in satellite cells. Ablation of this gene in satellite cells results in an up-regulation of myostatin and p21, which inhibit the proliferation of myoblasts. These results indicate that the regulation of numb and myostatin could be used to amplify muscle regeneration. This would function as a therapeutic approach to degenerative muscle diseases, such as muscular dystrophy. There are four mammalian NUMB proteins produced through alternative splicing of the Numb mRNA transcript. Only two isoforms are present in adult mammalian muscle, indicating some form of muscle-specific post-transcriptional control of the gene. Additionally, the presence of two polyadenylation sites, and multiple miRNA seed sequences within the 3’ untranslated region (UTR) of mouse Numb indicate the possibility of regulation by a muscle specific miRNA.
ContributorsGefroh, Bailey Emelia (Co-author) / Gefroh, Bailey (Co-author) / Wilson-Rawls, Jeanne (Thesis director) / Rawls, Alan (Committee member) / Palade, Joanna (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132615-Thumbnail Image.png
Description
Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers

Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers of Harpegnathos saltator in five-gallon buckets of sand and then allowing the colonies to grow for four months and twelve days. To create the nest casts, we developed a charcoal kiln out of a galvanized trash can and used a ceramic crucible to hold the aluminum being melted. Using molten aluminum to create nest casts of each colony produced, we obtained three poorly developed nests and one decent nest. The decent nest cast, the 80 worker H. saltator nest, was lacking key features of H. saltator nests that have been excavated in the field. However, they do share many of the same structures such as the shaping of the chambers. The ability of the experimental colonies to excavate the soil provided in the buckets to them was likely halted by poor penetration of water into superficial layers of the soil, thus making the soil too difficult to excavate and form the structures that are key elements of the species nest architecture. Despite these key challenges which the colonies faced, the 80-worker colony showed extensive vertical development and did display features associated with natural H. saltator colonies. Thus, given the display of some key features associated with characteristics of the H. saltator nests excavated in the field, it can be said that with some modification to technique that this is a viable avenue for future study of nest architecture and colony structure.
ContributorsAnderson, Clayton Edward (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131355-Thumbnail Image.png
Description
Complex animal societies consist of a plethora of interactions between members. To successfully thrive they must be able to recognize members and their kin, and to understand how they do this we need sufficient and reliable methods of testing. Eusocial insects are especially good at recognizing their nestmates, but the

Complex animal societies consist of a plethora of interactions between members. To successfully thrive they must be able to recognize members and their kin, and to understand how they do this we need sufficient and reliable methods of testing. Eusocial insects are especially good at recognizing their nestmates, but the exact mechanism or how well they can discriminate is unknown. Ants achieve nestmate recognition by identifying varying proportions of cuticular hydrocarbons. Previous studies have shown ants can be trained to discriminate between pairs of hydrocarbons. This study aims to compare two methodologies previously shown to demonstrate odor learning to identify which one is the most promising to use for future odor learning experiments. The two methods tested were adapted from Sharma et al. (2015) and Guerrieri and d’Ettorre (2010). The results showed that the Guerrieri method demonstrated learning better and was more reliable and faster than the Sharma method. The Guerrieri method should be used in future experiments regarding odor learning discrimination
ContributorsDavis, Cole (Author) / Liebig, Juergen (Thesis director) / Stephen, Pratt (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133208-Thumbnail Image.png
Description
For colonies of ponerine ant species, sterility regulation after a founding queen's death is not totally achieved in the worker caste, and the possibility of sexual reproduction is opened to workers. The persisting survival of these colonies is dependent on capturing the optimal reproductive ratio; yet, an informational gap bounds

For colonies of ponerine ant species, sterility regulation after a founding queen's death is not totally achieved in the worker caste, and the possibility of sexual reproduction is opened to workers. The persisting survival of these colonies is dependent on capturing the optimal reproductive ratio; yet, an informational gap bounds the mechanisms detailing the selection of new reproductives and the suppression of ovarian development in rejected reproductives. We investigated the mechanisms of worker policing, one of the primary methods of ovarian suppression, through continuous video observation for a period of five days at the start of colony instability. Observations suggest policing in H. saltator is performed by a majority of a colony, including potential reproductives, and requires multiple events to fully discourage ovarian growth.
ContributorsChien, Jeffrey (Co-author) / Barat Ali, Fatima (Co-author) / Kang, Yun (Thesis director) / Liebig, Juergen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133275-Thumbnail Image.png
Description
Due to the widely accepted trend of urbanization displacing wildlife from their natural habitats and niches, many wildlife conservation organizations have sprouted up, even in Phoenix. Liberty Wildlife Foundation is one that rehabilitates avian wildlife. Several studies have mentioned an opposing theory: that urbanization helps conserve those species that have

Due to the widely accepted trend of urbanization displacing wildlife from their natural habitats and niches, many wildlife conservation organizations have sprouted up, even in Phoenix. Liberty Wildlife Foundation is one that rehabilitates avian wildlife. Several studies have mentioned an opposing theory: that urbanization helps conserve those species that have turned urban environments into a niche of their own. Since these wildlife conservation centers are localized in cities themselves, this brings into question these organizations' definitions of the term "wildlife." This study examined injury and recovery statistics to determine just how many of the patients admitted were conventional wildlife versus urban-dwelling city birds, and whether this classification had any effect on their likeliness of recovery and release. The data showed that out of over 130 species, a few key urban species contributed to an overwhelmingly large majority of injured birds admitted to the center in 2017; urban and non-urban birds, however, had relatively equal average release frequencies, demonstrating then that their likelihood of recovery was predominantly dependent on the injury borne by them.
ContributorsVirdee, Rishika Kaur (Author) / Liebig, Juergen (Thesis director) / Lynch, John (Committee member) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Sarcopenia, a disease defined by age-related muscle loss and function, impacts each and every one of us as we age. Medical research over the past 40 years has identified dozens of factors that contribute to Sarcopenia, including, hormonal changes, deficiencies in nutrition, denervation, changes in physical activity and diseases. Developing

Sarcopenia, a disease defined by age-related muscle loss and function, impacts each and every one of us as we age. Medical research over the past 40 years has identified dozens of factors that contribute to Sarcopenia, including, hormonal changes, deficiencies in nutrition, denervation, changes in physical activity and diseases. Developing effective therapeutic treatments for Sarcopenia is dependent on identifying the mechanisms by which these factors affect muscle loss and understanding the interrelationship of these mechanisms. I conducted my research by compiling and analyzing several previous studies on many different mechanisms that contribute to Sarcopenia. Of these mechanisms, I determined the most significant mechanisms and mapped them out on a visual presentation. In addition to the contributing factors listed above, I found that dysregulated cell signaling, mitochondrial abnormalities, impaired autophagy/protein regulation, altered nitric oxide production, and systemic inflammation all contribute to Sarcopenia. Their impact on skeletal muscle is manifested by reduced satellite function, reduced regenerative capacity, loss of muscle mass, accumulation of damaged products, and fibrosis. My research clearly demonstrated that there was not a one-to-one correlation between factors and specific pathological characteristics of Sarcopenia. Instead, factors funneled into a discrete number of cellular processes, including cell proliferation, protein synthesis, and autophagy and apoptosis. Based on my findings, the overall cause of Sarcopenia appears to be a loss of balance between these pathways. The results of my thesis indicate that Sarcopenia is a multifactorial disorder, and therefore, effective therapy should consist of those that prevent necrosis associated with autophagy and apoptosis.
ContributorsSmith, Cameron Isaiah (Co-author) / Rawls, Alan (Co-author, Thesis director) / Wilson-Rawls, Jeanne (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134437-Thumbnail Image.png
Description
Numb is a gene that encodes an adaptor protein which has been characterized for its role cell migration, cell adhesion, endocytosis, and cell fate determination through asymmetrical division in various embryonic and adult tissues. In vertebrates, several Numb isoforms are produced via alternative splicing. In the Mus musculus genome, one

Numb is a gene that encodes an adaptor protein which has been characterized for its role cell migration, cell adhesion, endocytosis, and cell fate determination through asymmetrical division in various embryonic and adult tissues. In vertebrates, several Numb isoforms are produced via alternative splicing. In the Mus musculus genome, one Numb gene on chromosome 12 is alternatively spliced to produce four distinct protein isoforms, characterized by an 11 amino acid insert in the phosphotyrosine binding domain and a 49 amino acid insert in the proline rich region. Two poly adenylation sites in the currently published Numb 3' UTR exist, thus, the possibility that various 3' UTRs containing different miRNA seed sites is a possible posttranscriptional mechanism by which differential expression is observed. In an attempt to elucidate this hypothesis, PCR was performed to amplify the 3' UTR of murine neural tube cells, the products of which were subsequently cloned and sequenced. Multiple fragment sizes were consistently observed in the PCR data, however, sequencing demonstrated that these bands did not reveal an association with Numb.
ContributorsGama, Garrick Joseph (Author) / Wilson-Rawls, Jeanne (Thesis director) / Rawls, Alan (Committee member) / Palade, Joanna (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134975-Thumbnail Image.png
Description
Schizophrenia risk is influenced by both genetic and environmental factors. The immediate early gene early growth response 3 (Egr3), is regulated downstream of several schizophrenia risk genes and encodes a zinc-finger transcription factor protein. Previous studies from our lab indicate that Egr3 deficient (Egr3 -/-) mice exhibit schizophrenia-like phenotypes. We

Schizophrenia risk is influenced by both genetic and environmental factors. The immediate early gene early growth response 3 (Egr3), is regulated downstream of several schizophrenia risk genes and encodes a zinc-finger transcription factor protein. Previous studies from our lab indicate that Egr3 deficient (Egr3 -/-) mice exhibit schizophrenia-like phenotypes. We also discovered decreased serotonin 2a receptors (5-HT2AR) in the Egr3 -/- mice, similar to studies that reported decreased 5-HT2ARs in schizophrenia patients. We previously reported that sleep deprivation, a mild stress, causes the over expression of Egr3 and the serotonin 2a gene (Htr2a) in the cortex. To determine whether EGR3, a transcription factor, regulates Htr2a in the prefrontal cortex after sleep deprivation, Egr3 -/-and Egr3 +/+ mice were sleep deprived for eight hours. Transgenic mice were used that expressed enhanced green fluorescent protein (EGFP) under control of the Htr2a promoter via a bacterial artificial chromosome (BAC). Immunohistochemistry was performed to identify EGFP containing cells. Data analysis revealed no significant interaction between genotype and sleep deprivation in 5-HT2AR/EGFP containing cells within the prefrontal cortex. Based on the findings of this study, more data is needed to better determine the relationship between sleep deprivation and its effect on the regulation of Htr2a through in an EGR3 dependent manner.
ContributorsReznik, Derek Lee (Author) / Wilson-Rawls, Jeanne (Thesis director) / Gallitano, Amelia (Committee member) / Anderson, Karen (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12