Matching Items (151)
130413-Thumbnail Image.png
Description
Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied.

Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance.
Created2014-09-01
132382-Thumbnail Image.png
Description
When ants encounter liquid food, they have two options of transporting that food to their nests. The first is the social bucket method in which liquid is carried in the mandibles of the workers back to the nest. The second is trophallaxis in which liquid is imbibed and then transported

When ants encounter liquid food, they have two options of transporting that food to their nests. The first is the social bucket method in which liquid is carried in the mandibles of the workers back to the nest. The second is trophallaxis in which liquid is imbibed and then transported inside the ant back to the nest. The liquid is then regurgitated to fellow nestmates. Ectatomma have been observed using the social bucket method of transport and were considered members of the Ponerine family. However, a new phylogeny created by Borowiec and Rabeling places Ectatomma near to Formecinae and Myrmicinae, both know for practicing trophallaxis. This seems to suggest either Ectatomma is able to utilize trophallaxis as well or that the evolutionary practice of trophallaxis is more plastic than previously believed. The ability of Ectatomma ruidum to utilize trophallaxis was examined in two experiments. The first experiment examined E. ruidum’s ability to practice worker to worker trophallaxis and the second examined E. ruidum’s ability to perform worker to larva trophallaxis. The results of both experiments indicated that E. ruidum cannot utilize trophallaxis but the larva of E. ruidum may be able to regurgitate to the workers. These results in turn seem to suggest that trophallaxis is a bit more plastic than originally thought.
ContributorsCunningham, Cassius Alexander (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132471-Thumbnail Image.png
Description
Studies of cooperation remain an important aspect in understanding the evolution of social cues and interactions. One example of cooperation is pleometrosis, an associative behavior of forming a colony with two unrelated, fertile queens. However, most ant species display haplometrosis, the founding of a colony by a single queen. In

Studies of cooperation remain an important aspect in understanding the evolution of social cues and interactions. One example of cooperation is pleometrosis, an associative behavior of forming a colony with two unrelated, fertile queens. However, most ant species display haplometrosis, the founding of a colony by a single queen. In these associations, the queen typically rejects cooperation. In populations of Pogonomyrmex californicus, both pleometrosis and haplometrosis exists. It is not clear how associative -metrosis became a practiced behavior since haplometrotic queens tend to fight. However, as fighting in pleometrotic queens became less frequent, this induces benefit, in terms of cost savings, in having associative behaviors. The hypothesis tested was nest excavation of pleometrotic queens show sociality, while haplometrotic queens show association independence. Isolated pleometrotic queens (P) showed low excavation rate at 2.72cm2/day, compared to the rate when the task was shared in (PP) nests, 4.57cm2/day. Nest area of the (P) queens were also affected during days 3 and 4 of the experiment, where there was presence of nest area decrease. Furthermore, the excavation session of (P) was the only one determined as significant between all other nests. Although the (P) queens have low values, they eventually reach a similar point as the other nests by day 6. However, the lack of haste in excavation leads to longer exposure to the elements, substituting the risk of losing cuticles in excavation for the risk of predation. For the haplometrotic queens, nests of (H) and (HH) displayed no significant difference in excavation values, leading to having social effect in their association.
ContributorsGabriel, Ian Paulo Villalobos (Author) / Fewell, Jennifer (Thesis director) / Pratt, Stephen (Committee member) / Bespalova, Ioulia (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132615-Thumbnail Image.png
Description
Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers

Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers of Harpegnathos saltator in five-gallon buckets of sand and then allowing the colonies to grow for four months and twelve days. To create the nest casts, we developed a charcoal kiln out of a galvanized trash can and used a ceramic crucible to hold the aluminum being melted. Using molten aluminum to create nest casts of each colony produced, we obtained three poorly developed nests and one decent nest. The decent nest cast, the 80 worker H. saltator nest, was lacking key features of H. saltator nests that have been excavated in the field. However, they do share many of the same structures such as the shaping of the chambers. The ability of the experimental colonies to excavate the soil provided in the buckets to them was likely halted by poor penetration of water into superficial layers of the soil, thus making the soil too difficult to excavate and form the structures that are key elements of the species nest architecture. Despite these key challenges which the colonies faced, the 80-worker colony showed extensive vertical development and did display features associated with natural H. saltator colonies. Thus, given the display of some key features associated with characteristics of the H. saltator nests excavated in the field, it can be said that with some modification to technique that this is a viable avenue for future study of nest architecture and colony structure.
ContributorsAnderson, Clayton Edward (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12
133015-Thumbnail Image.png
Description
Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on

Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on the 3’UTR and execute the cleavage reaction. Interactions of the complex with the RNA and specific dynamics of complex recruitment and formation still remain largely uncharacterized. In our lab we have identified an Adenosine residue as the nucleotide most often present at the cleavage site, although it is unclear whether this specific element is a required instructor of cleavage and polyadenylation. To address whether the Adenosine residue is necessary and sufficient for the cleavage and polyadenylation reaction, we mutated this nucleotide at the cleavage site in three C. elegans protein coding genes, forcing the expression of these wt and mutant 3’UTRs, and studied how the cleavage and polyadenylation machinery process these genes in vivo. We found that interrupting the wt sequence elements found at the cleavage site interferes with the cleavage and polyadenylation reaction, suggesting that the sequence close to the end of the transcript plays a role in modulating the site of the RNA cleavage. This activity is also gene-specific. Genes such as ges-1 showed little disruption in the cleavage of the transcript, with similar location occurring in both the wt and mutant 3’UTRs. On the other hand, mutation of the cleavage site in genes such as Y106G6H.9 caused the activation of new cryptic cleavage sites within the transcript. Taken together, my experiments suggest that the sequence elements at the cleavage site somehow participate in the reaction to guide the cleavage reaction to occur at an exact site. This work will help to better understand the mechanisms of transcription termination in vivo and will push forward research aimed to study post-transcriptional gene regulation in eukaryotes.
ContributorsSteber, Hannah Suzanne (Author) / Mangone, Marco (Thesis director) / Harris, Robin (Committee member) / LaBaer, Joshua (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132881-Thumbnail Image.png
Description
Temnothorax rugatulus ants are known to recruit via the use of tandem running, a typically two ant interaction in which a leader ant guides a follower ant to a particular location with the intent of teaching the follower ant the knowledge required to navigate to said location independently. In general,

Temnothorax rugatulus ants are known to recruit via the use of tandem running, a typically two ant interaction in which a leader ant guides a follower ant to a particular location with the intent of teaching the follower ant the knowledge required to navigate to said location independently. In general, the purposes of tandem runs are fairly clear. There are tandem runs towards food in order to recruit gatherers, and there are tandem runs towards potential new nest sites to allow the colony to assess site quality. However, a group of tandem runs known as “reverse tandem runs” are a subject of mystery at this time. Reverse tandem runs are a type of tandem run found mainly during specific spans of Temnothorax colony migration. They typically arise during the period of migration when brood are being transported into a new nest site. The carriers of the brood, when returning to the old nest site to gather more brood, occasionally start tandem runs running backwards towards the old nest. In this study, the effect of navigational and physical obstacles encountered during migrations on the number of reverse tandem runs was tested. The hypothesis being that such a disturbance would cause an increase in reverse tandem runs as a method of overcoming the obstacle. This study was completed over the course of two experiments. This first experiment showed no indication of the ants having any trouble with the applied disturbance, and a second experiment with a larger challenge for the migrating ants was performed. The results of this second experiment showed that a migration obstacle will lead to an increase in migration time as well as an increase in the number of failed reverse tandem runs (reverse tandem runs that started but never reached the old nest). However, it was shown that the number of complete reverse tandem runs (reverse tandem runs that reached the old nest) remained the same whether the obstacle was introduced or not.
ContributorsKang, Byounghoon (Author) / Pratt, Stephen (Thesis director) / Juergen, Liebig (Committee member) / Valentini, Gabriele (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133514-Thumbnail Image.png
Description
Among the most ornate animal traits in nature are the angle-dependent (i.e. iridescent) structural colors of many birds, beetles, and butterflies. Though we now have a solid understanding of the mechanisms, function, and evolution of these features in several groups, less attention has been paid to the potential for angle-dependent

Among the most ornate animal traits in nature are the angle-dependent (i.e. iridescent) structural colors of many birds, beetles, and butterflies. Though we now have a solid understanding of the mechanisms, function, and evolution of these features in several groups, less attention has been paid to the potential for angle-dependent reflectance in otherwise matte-appearing (i.e. not thought to be structurally colored) tissues. Here for the first time we describe non-iridescent angle-dependent coloration from the tail and wing feathers of several parrot species (Psittaciformes). We employed a novel approach \u2014 by calculating chromatic and achromatic contrasts (in just noticeable differences, JNDs) of straight and angled measurements of the same feather patch \u2014 to test for perceptually relevant angle-dependent changes in coloration on dorsal and ventral feather surfaces. We found, among the 15 parrot species studied, significant angle dependence for nearly all parameters (except chromatic JNDs on the ventral side of wing feathers). We then measured microstructural features on each side of feathers, including size and color of barbs and barbules, to attempt to predict interspecific variation in degree of angle-dependent reflectance. We found that hue, saturation, and brightness of feather barbs, barbule saturation, and barb:barbule coverage ratio were the strongest predictors of angle-dependent coloration. Interestingly, there was significant phylogenetic signal in only one of the seven angle-dependence models tested. These findings deepen our views on the importance of microscopic feather features in the production of directional animal coloration, especially in tissues that appear to be statically colored.
ContributorsReed, Steven Andrew (Co-author) / McGraw, Kevin (Thesis director) / Pratt, Stephen (Committee member) / Simpson, Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134308-Thumbnail Image.png
Description
Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and

Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions.
ContributorsPeela, Nitish (Author) / Nikkhah, Mehdi (Thesis director) / LaBaer, Joshua (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134436-Thumbnail Image.png
Description
Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor

Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor OLIG2 in maintaining the tumor-propagating potential of these glioma stem cells. OLIG2's function was further elucidated, with its pro-mitogenic function due to its ability to negatively regulate the p53 pathway by suppressing the acetylation of the p53 protein's C terminal domain. Past work in our lab has confirmed that one of OLIG2's partner proteins is Histone Deacetylase 1 (HDAC1). In vitro experiments have also shown that targeting HDAC1 using hairpin RNA in glioma stem cells negatively impacts proliferation. In a survival study using a murine glioma model, targeting Hdac1 using hairpin RNA is shown to reduce tumor burden and increase survival. In this paper, we demonstrate that silencing Hdac1 expression reduces proliferation, increases cell death, likely a result of increased acetylation of p53. Olig2 expression levels seem to be unaffected in GSCs, demonstrating that the Hdac1 protein ablation is indeed lethal to GSCs. This work builds upon previously collected results, confirming that Hdac1 is a potential surrogate target for Olig2's pro-mitotic function in regulating the p53 pathway.
ContributorsLoo, Vincent You Wei (Author) / LaBaer, Joshua (Thesis director) / Mehta, Shwetal (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05