Matching Items (26)
130387-Thumbnail Image.png
Description

X-ray free electron lasers are used in measuring diffraction patterns from nanocrystals in the 'diffract-before-destroy' mode by outrunning radiation damage. The finite-sized nanocrystals provide an opportunity to recover intensity between Bragg spots by removing the modulating function that depends on crystal shape, i.e. the transform of the crystal shape. This

X-ray free electron lasers are used in measuring diffraction patterns from nanocrystals in the 'diffract-before-destroy' mode by outrunning radiation damage. The finite-sized nanocrystals provide an opportunity to recover intensity between Bragg spots by removing the modulating function that depends on crystal shape, i.e. the transform of the crystal shape. This shape-transform dividing-out scheme for solving the phase problem has been tested using simulated examples with cubic crystals. It provides a phasing method which does not require atomic resolution data, chemical modification to the sample, or modelling based on the protein databases. It is common to find multiple structural units (e.g. molecules, in symmetry-related positions) within a single unit cell, therefore incomplete unit cells (e.g. one additional molecule) can be observed at surface layers of crystals. In this work, the effects of such incomplete unit cells on the 'dividing-out' phasing algorithm are investigated using 2D crystals within the projection approximation. It is found that the incomplete unit cells do not hinder the recovery of the scattering pattern from a single unit cell (after dividing out the shape transforms from data merged from many nanocrystals of different sizes), assuming that certain unit-cell types are preferred. The results also suggest that the dynamic range of the data is a critical issue to be resolved in order to apply the shape transform method practically.

ContributorsLiu, Haiguang (Author) / Zatsepin, Nadia (Author) / Spence, John (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-01-01
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130322-Thumbnail Image.png
Description

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

ContributorsMunke, Anna (Author) / Andreasson, Jakob (Author) / Aquila, Andrew (Author) / Awel, Salah (Author) / Ayyer, Kartik (Author) / Barty, Anton (Author) / Bean, Richard J. (Author) / Berntsen, Peter (Author) / Bielecki, Johan (Author) / Boutet, Sebastien (Author) / Bucher, Maximilian (Author) / Chapman, Henry N. (Author) / Daurer, Benedikt J. (Author) / DeMirci, Hasan (Author) / Elser, Veit (Author) / Fromme, Petra (Author) / Hajdu, Janos (Author) / Hantke, Max F. (Author) / Higashiura, Akifumi (Author) / Hogue, Brenda (Author) / Hosseinizadeh, Ahmad (Author) / Kim, Yoonhee (Author) / Kirian, Richard (Author) / Reddy, Hemanth K. N. (Author) / Lan, Ti-Yen (Author) / Larsson, Daniel S. D. (Author) / Liu, Haiguang (Author) / Loh, N. Duane (Author) / Maia, Filipe R. N. C. (Author) / Mancuso, Adrian P. (Author) / Muhlig, Kerstin (Author) / Nakagawa, Atsushi (Author) / Nam, Daewoong (Author) / Nelson, Garrett (Author) / Nettelblad, Carl (Author) / Okamoto, Kenta (Author) / Ourmazd, Abbas (Author) / Rose, Max (Author) / van der Schot, Gijs (Author) / Schwander, Peter (Author) / Seibert, M. Marvin (Author) / Sellberg, Jonas A. (Author) / Sierra, Raymond G. (Author) / Song, Changyong (Author) / Svenda, Martin (Author) / Timneanu, Nicusor (Author) / Vartanyants, Ivan A. (Author) / Westphal, Daniel (Author) / Wiedom, Max O. (Author) / Williams, Garth J. (Author) / Xavier, Paulraj Lourdu (Author) / Soon, Chun Hong (Author) / Zook, James (Author) / College of Liberal Arts and Sciences (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Life Sciences (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2016-08-01
130343-Thumbnail Image.png
Description
It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as

It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR—a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.
ContributorsKessans, Sarah (Author) / Linhart, Mark (Author) / Meador, Lydia (Author) / Kilbourne, Jacquelyn (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Matoba, Nobuyuki (Author) / Mor, Tsafrir (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor, Contributor) / Infectious Diseases and Vaccinology (Contributor) / Applied Structural Discovery (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2016-03-17
130350-Thumbnail Image.png
Description

The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683)

The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649–705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM).

Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

ContributorsGong, Zhen (Author) / Martin Garcia, Jose Manuel (Author) / Daskalova, Sasha (Author) / Craciunescu, Felicia (Author) / Song, Lusheng (Author) / Dorner, Katerina (Author) / Hansen, Debra (Author) / Yang, Jay-How (Author) / LaBaer, Joshua (Author) / Hogue, Brenda (Author) / Mor, Tsafrir (Author) / Fromme, Petra (Author) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Innovations in Medicine (Contributor) / Personalized Diagnostics (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-08-21
130313-Thumbnail Image.png
Description
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
ContributorsLi, Dianfan (Author) / Stansfeld, Phillip J. (Author) / Sansom, Mark S. P. (Author) / Keogh, Aaron (Author) / Vogeley, Lutz (Author) / Howe, Nicole (Author) / Lyons, Joseph A. (Author) / Aragao, David (Author) / Fromme, Petra (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Kupitz, Christopher (Author) / Rendek, Kimberley (Author) / Weierstall, Uwe (Author) / Zatsepin, Nadia (Author) / Cherezov, Vadim (Author) / Liu, Wei (Author) / Bandaru, Sateesh (Author) / English, Niall J. (Author) / Gati, Cornelius (Author) / Barty, Anton (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Diederichs, Kay (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Seibert, M. Marvin (Author) / Caffrey, Martin (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-12-17
154121-Thumbnail Image.png
Description
Photosystem II (PSII) is a large protein-cofactor complex. The first step in

photosynthesis involves the harvesting of light energy from the sun by the antenna (made

of pigments) of the PSII trans-membrane complex. The harvested excitation energy is

transferred from the antenna complex to the reaction center of the PSII, which leads to

Photosystem II (PSII) is a large protein-cofactor complex. The first step in

photosynthesis involves the harvesting of light energy from the sun by the antenna (made

of pigments) of the PSII trans-membrane complex. The harvested excitation energy is

transferred from the antenna complex to the reaction center of the PSII, which leads to a

light-driven charge separation event, from water to plastoquinone. This phenomenal

process has been producing the oxygen that maintains the oxygenic environment of our

planet for the past 2.5 billion years.

The oxygen molecule formation involves the light-driven extraction of 4 electrons

and protons from two water molecules through a multistep reaction, in which the Oxygen

Evolving Center (OEC) of PSII cycles through 5 different oxidation states, S0 to S4.

Unraveling the water-splitting mechanism remains as a grant challenge in the field of

photosynthesis research. This requires the development of an entirely new capability, the

ability to produce molecular movies. This dissertation advances a novel technique, Serial

Femtosecond X-ray crystallography (SFX), into a new realm whereby such time-resolved

molecular movies may be attained. The ultimate goal is to make a “molecular movie” that

reveals the dynamics of the water splitting mechanism using time-resolved SFX (TRSFX)

experiments and the uniquely enabling features of X-ray Free-Electron Laser

(XFEL) for the study of biological processes.

This thesis presents the development of SFX techniques, including development of

new methods to analyze millions of diffraction patterns (~100 terabytes of data per XFEL

experiment) with the goal of solving the X-ray structures in different transition states.

ii

The research comprises significant advancements to XFEL software packages (e.g.,

Cheetah and CrystFEL). Initially these programs could evaluate only 8-10% of all the

data acquired successfully. This research demonstrates that with manual optimizations,

the evaluation success rate was enhanced to 40-50%. These improvements have enabled

TR-SFX, for the first time, to examine the double excited state (S3) of PSII at 5.5-Å. This

breakthrough demonstrated the first indication of conformational changes between the

ground (S1) and the double-excited (S3) states, a result fully consistent with theoretical

predictions.

The power of the TR-SFX technique was further demonstrated with proof-of principle

experiments on Photoactive Yellow Protein (PYP) micro-crystals that high

temporal (10-ns) and spatial (1.5-Å) resolution structures could be achieved.

In summary, this dissertation research heralds the development of the TR-SFX

technique, protocols, and associated data analysis methods that will usher into practice a

new era in structural biology for the recording of ‘molecular movies’ of any biomolecular

process.
ContributorsBasu, Shibom, 1988- (Author) / Fromme, Petra (Thesis advisor) / Spence, John C.H. (Committee member) / Wolf, George (Committee member) / Ros, Robert (Committee member) / Fromme, Raimund (Committee member) / Arizona State University (Publisher)
Created2015
155026-Thumbnail Image.png
Description
Phase problem has been long-standing in x-ray diffractive imaging. It is originated from the fact that only the amplitude of the scattered wave can be recorded by the detector, losing the phase information. The measurement of amplitude alone is insufficient to solve the structure. Therefore, phase retrieval is essential to

Phase problem has been long-standing in x-ray diffractive imaging. It is originated from the fact that only the amplitude of the scattered wave can be recorded by the detector, losing the phase information. The measurement of amplitude alone is insufficient to solve the structure. Therefore, phase retrieval is essential to structure determination with X-ray diffractive imaging. So far, many experimental as well as algorithmic approaches have been developed to address the phase problem. The experimental phasing methods, such as MAD, SAD etc, exploit the phase relation in vector space. They usually demand a lot of efforts to prepare the samples and require much more data. On the other hand, iterative phasing algorithms make use of the prior knowledge and various constraints in real and reciprocal space. In this thesis, new approaches to the problem of direct digital phasing of X-ray diffraction patterns from two-dimensional organic crystals were presented. The phase problem for Bragg diffraction from two-dimensional (2D) crystalline monolayer in transmission may be solved by imposing a compact support that sets the density to zero outside the monolayer. By iterating between the measured stucture factor magnitudes along reciprocal space rods (starting with random phases) and a density of the correct sign, the complex scattered amplitudes may be found (J. Struct Biol 144, 209 (2003)). However this one-dimensional support function fails to link the rod phases correctly unless a low-resolution real-space map is also available. Minimum prior information required for successful three-dimensional (3D) structure retrieval from a 2D crystal XFEL diffraction dataset were investigated, when using the HIO algorithm. This method provides an alternative way to phase 2D crystal dataset, with less dependence on the high quality model used in the molecular replacement method.
ContributorsZhao, Yun (Author) / Spence, John C.H. (Thesis advisor) / Schmidt, Kevin (Committee member) / Weierstall, Uwe (Committee member) / Kirian, Richard (Committee member) / Zatsepin, Nadia (Committee member) / Arizona State University (Publisher)
Created2016
157795-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) uses diffraction patterns from crystals delivered in a serial fashion to an X-Ray Free Electron Laser (XFEL) for structure determination. Typically, each diffraction pattern is a snapshot from a different crystal. SFX limits the effect of radiation damage and enables the use of nano/micro crystals for

Serial femtosecond crystallography (SFX) uses diffraction patterns from crystals delivered in a serial fashion to an X-Ray Free Electron Laser (XFEL) for structure determination. Typically, each diffraction pattern is a snapshot from a different crystal. SFX limits the effect of radiation damage and enables the use of nano/micro crystals for structure determination. However, analysis of SFX data is challenging since each snapshot is processed individually.

Many photosystem II (PSII) dataset have been collected at XFELs, several of which are time-resolved (containing both dark and laser illuminated frames). Comparison of light and dark datasets requires understanding systematic errors that can be introduced during data analysis. This dissertation describes data analysis of PSII datasets with a focus on the effect of parameters on later results. The influence of the subset of data used in the analysis is also examined and several criteria are screened for their utility in creating better subsets of data. Subsets are compared with Bragg data analysis and continuous diffuse scattering data analysis.

A new tool, DatView aids in the creation of subsets and visualization of statistics. DatView was developed to improve the loading speed to visualize statistics of large SFX datasets and simplify the creation of subsets based on the statistics. It combines the functionality of several existing visualization tools into a single interface, improving the exploratory power of the tool. In addition, it has comparison features that allow a pattern-by-pattern analysis of the effect of processing parameters. \emph{DatView} improves the efficiency of SFX data analysis by reducing loading time and providing novel visualization tools.
ContributorsStander, Natasha (Author) / Fromme, Petra (Thesis advisor) / Zatsepin, Nadia (Thesis advisor) / Kirian, Richard (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2019
Description

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods.

ContributorsHunter, Mark S. (Author) / Segelke, Brent (Author) / Messerschmidt, Marc (Author) / Williams, Garth J. (Author) / Zatsepin, Nadia (Author) / Barty, Anton (Author) / Benner, W. Henry (Author) / Carlson, David B. (Author) / Coleman, Matthew (Author) / Graf, Alexander (Author) / Hau-Riege, Stefan P. (Author) / Pardini, Tommaso (Author) / Seibert, M. Marvin (Author) / Evans, James (Author) / Boutet, Sebastien (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-12