Matching Items (192)
147870-Thumbnail Image.png
Description

Descriptive representation is important to building and maintaining a fair court system, especially within a context of historical oppression by race or gender. Using official government biographies, voter rolls, news articles, and press releases, I collected demographic information on the judges of Arizona and compared it to Census data, to

Descriptive representation is important to building and maintaining a fair court system, especially within a context of historical oppression by race or gender. Using official government biographies, voter rolls, news articles, and press releases, I collected demographic information on the judges of Arizona and compared it to Census data, to show how under representative the state courts of Arizona currently are. Through the use of non-attorney judges, the Justice Court of Arizona has become the most representative level of the state court. Almost all of the BIPOC judges of the Justice Court are not attorneys. Allowing non-attorney Justices of the Peace has made it possible for the court to be more representative of Arizonans. However, even though it is the most representative state court, the Justice Court vastly under represents women and BIPOC as judges. As racial tension and movements for fairness under the law increase, it is important to challenge how the courts could better serve Arizona.

ContributorsLivingston, Caroline Shaw (Author) / Voorhees, Matthew (Thesis director) / Foy, Joseph (Committee member) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148027-Thumbnail Image.png
Description

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several different compositional categories that can be dated based on their relative ages. The depositional timeline of these rocks is explored through their mineral and physical properties. The rhyolitic debris flow is massively bedded and dips at 26° to the southeast. The granitic debris flow is not bedded and exhibits a mixture of granite clasts of different grain sizes. In thin section analysis, five mineral types were identified: opaque inclusions, white quartz, anhedral and subhedral biotite, yellow stained K-feldspar, and gray plagioclase. It is hypothesized that regional stretching and compression of the crust, accompanied with magmatism, helped bring the metarhyolite and granite to the surface. Domino-like fault blocks caused large brecciation, and collapse of a nearby quartzite and granite mountain helped create the Barnes Butte Breccia: a combination of quartzite, metarhyolite, and granite clasts. Evidence of Papago Park’s ancient terrestrial history is seen in metarhyolite clasts containing sand grains. These geologic events, in addition to erosion, are responsible for Papago Park’s unique appearance today.

ContributorsScheller, Jessica Rose (Author) / Reynolds, Stephen (Thesis director) / Johnson, Julia (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147988-Thumbnail Image.png
Description

Stardust grains can provide useful information about the Solar System environment before the Sun was born. Stardust grains show distinct isotopic compositions that indicate their origins, like the atmospheres of red giant stars, asymptotic giant branch stars, and supernovae (e.g., Bose et al. 2010). It has been argued that some

Stardust grains can provide useful information about the Solar System environment before the Sun was born. Stardust grains show distinct isotopic compositions that indicate their origins, like the atmospheres of red giant stars, asymptotic giant branch stars, and supernovae (e.g., Bose et al. 2010). It has been argued that some stardust grains likely condensed in classical nova outbursts (e.g., Amari et al. 2001). These nova candidate grains contain 13C, 15N and 17O-rich nuclides which are produced by proton burning. However, these nuclides alone cannot constrain the stellar source of nova candidate grains. Nova ejecta is rich in 7Be that decays to 7Li (which has a half-life of ~53 days). I want to measure 6,7Li isotopes in nova candidate grains using the NanoSIMS 50L (nanoscale secondary ion mass spectrometry) to establish their nova origins without ambiguity. Several stardust grains that are nova candidate grains were identified in meteorite Acfer 094 on the basis of their oxygen isotopes. The identified silicate and oxide stardust grains are <500 nm in size and exist in the meteorite surrounded by meteoritic silicates. Therefore, 6,7Li isotopic measurements on these grains are hindered because of the large 300-500 nm oxygen ion beam in the NanoSIMS. I devised a methodology to isolate stardust grains by performing Focused Ion Beam milling with the FIB – Nova 200 NanoLab (FEI) instrument. We proved that the current FIB instrument cannot be used to prepare stardust grains smaller than 1 𝜇m due to lacking capabilities of the FIB. For future analyses, we could either use the same milling technique with the new and improved FIB – Helios 5 UX or use the recently constructed duoplasmatron on the NanoSIMS that can achieve a size of ~75 nm oxygen ion beam.

ContributorsDuncan, Ethan Jay (Author) / Bose, Miatrayee (Thesis director) / Starrfield, Sumner (Committee member) / Desch, Steve (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147996-Thumbnail Image.png
Description

William Blake posits that without contraries, there will be no progress. The concepts of Heaven and Hell are originally used to represent the contrary of reason and energy, but it is also appropriate to represent Heaven and Hell in terms of order and entropy. This newly proposed contrary relies on

William Blake posits that without contraries, there will be no progress. The concepts of Heaven and Hell are originally used to represent the contrary of reason and energy, but it is also appropriate to represent Heaven and Hell in terms of order and entropy. This newly proposed contrary relies on the application of entropic brain theory, which states that normal, waking consciousness (secondary consciousness) has decreased entropy relative to primary consciousness. It is argued that Blake uses the concept of Hell to promote the use of psychedelics in order to progress human life by informing the surrounding world that the body limits human perception of the surroundings. This indirectly advocates for an increase in entropy in the brain because psychedelics induce a higher repertoire of functional connectivity motifs that allow for the dissolution of the “self” to help remove the doors of perception and reveal the infinite. Additionally, it is determined that Blake uses the contrary of entropy and order, which is representative of Hell and Heaven, to predict the impending wave of liberty/revolution (progress) in England.

ContributorsEghlimi, Ryan A (Author) / Fette, Don (Thesis director) / Foy, Joseph (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148081-Thumbnail Image.png
Description

This work describes the fundamentals of quantum mechanics in relation to quantum computing, as well as the architecture of quantum computing.

ContributorsDemaria, Rachel Emily (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148089-Thumbnail Image.png
Description

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has been a point of interest since at least the 1960’s (Raymahashay, 1968). Two springs, one basic (~pH 7) and one acidic (~pH 3) mix together down an outflow channel. There are visual bands of different photosynthetic pigments which suggests the creation of temperature and chemical gradients due to the fluids mixing. In this study, to determine if fluid mixing is driving these changes of temperature and chemistry in the system, a model that factors in evaporation and cooling was developed and compared to measured temperature and chemical data collected downstream. Comparison of the modeled temperature and chemistry to the measured values at the downstream mixture shows that many of the ions, such as Cl⁻, F⁻, and Li⁺, behave conservatively with respect to mixing. This indicates that the influence of mixing accounts for a large proportion of variation in the chemical composition of the system. However, there are some chemical constituents like CH₄, H₂, and NO₃⁻, that were not conserved, and the concentrations were either depleted or increased in the downstream mixture. Some of these constituents are known to be used by microorganisms. The development of this mixing model can be used as a tool for predicting biological activity as well as building the framework for future geochemical and computational models that can be used to understand the energy availability and the microbial communities that are present.

ContributorsOrrill, Brianna Isabel (Author) / Shock, Everett (Thesis director) / Howells, Alta (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147894-Thumbnail Image.png
Description

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.

ContributorsRapp, Sean R (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137706-Thumbnail Image.png
Description
Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions.

Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions. Water distribution statistics, stakeholders, policy structure, and government organization were combined in an organizational framework to compare the practices of the two cities. These inputs were weighed against the outcomes and the sustainability of each system. While Mesa is part of a massive metropolitan area, Hermosillo is still developing into a metropolitan center and does not have access to the same infrastructure and resources. In Hermosillo local needs are frequently discounted in favor of broad political goals.
ContributorsMoe, Rud Lamb (Author) / Chhetri, Netra (Thesis director) / White, Dave (Committee member) / Robles-Morua, Agustin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2013-05