Matching Items (36)
Description
Fiber-Wireless (FiWi) network is the future network configuration that uses optical fiber as backbone transmission media and enables wireless network for the end user. Our study focuses on the Dynamic Bandwidth Allocation (DBA) algorithm for EPON upstream transmission. DBA, if designed properly, can dramatically improve the packet transmission delay and

Fiber-Wireless (FiWi) network is the future network configuration that uses optical fiber as backbone transmission media and enables wireless network for the end user. Our study focuses on the Dynamic Bandwidth Allocation (DBA) algorithm for EPON upstream transmission. DBA, if designed properly, can dramatically improve the packet transmission delay and overall bandwidth utilization. With new DBA components coming out in research, a comprehensive study of DBA is conducted in this thesis, adding in Double Phase Polling coupled with novel Limited with Share credits Excess distribution method. By conducting a series simulation of DBAs using different components, we found out that grant sizing has the strongest impact on average packet delay and grant scheduling also has a significant impact on the average packet delay; grant scheduling has the strongest impact on the stability limit or maximum achievable channel utilization. Whereas the grant sizing only has a modest impact on the stability limit; the SPD grant scheduling policy in the Double Phase Polling scheduling framework coupled with Limited with Share credits Excess distribution grant sizing produced both the lowest average packet delay and the highest stability limit.
ContributorsZhao, Du (Author) / Reisslein, Martin (Thesis advisor) / McGarry, Michael (Committee member) / Fowler, John (Committee member) / Arizona State University (Publisher)
Created2011
151698-Thumbnail Image.png
Description
Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities [1], however; there is no patient-centric information available to the patient

Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities [1], however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical organs across all input data scenarios which are corresponding to the positioning and size of the organs. The computational results indicate up to 26% increase in the absorbed dose calculated for the robust approach which ensures the feasibility across scenarios.
ContributorsKhodadadegan, Yasaman (Author) / Zhang, Muhong (Thesis advisor) / Pavlicek, William (Thesis advisor) / Fowler, John (Committee member) / Wu, Tong (Committee member) / Arizona State University (Publisher)
Created2013
151329-Thumbnail Image.png
Description
During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments help reduce the large number of factors to a smaller set.

During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments help reduce the large number of factors to a smaller set. The 16 run regular fractional factorial designs for six, seven and eight factors are in common usage. These designs allow clear estimation of all main effects when the three-factor and higher order interactions are negligible, but all two-factor interactions are aliased with each other making estimation of these effects problematic without additional runs. Alternatively, certain nonregular designs called no-confounding (NC) designs by Jones and Montgomery (Jones & Montgomery, Alternatives to resolution IV screening designs in 16 runs, 2010) partially confound the main effects with the two-factor interactions but do not completely confound any two-factor interactions with each other. The NC designs are useful for independently estimating main effects and two-factor interactions without additional runs. While several methods have been suggested for the analysis of data from nonregular designs, stepwise regression is familiar to practitioners, available in commercial software, and is widely used in practice. Given that an NC design has been run, the performance of stepwise regression for model selection is unknown. In this dissertation I present a comprehensive simulation study evaluating stepwise regression for analyzing both regular fractional factorial and NC designs. Next, the projection properties of the six, seven and eight factor NC designs are studied. Studying the projection properties of these designs allows the development of analysis methods to analyze these designs. Lastly the designs and projection properties of 9 to 14 factor NC designs onto three and four factors are presented. Certain recommendations are made on analysis methods for these designs as well.
ContributorsShinde, Shilpa (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Committee member) / Fowler, John (Committee member) / Jones, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151008-Thumbnail Image.png
Description
Buildings (approximately half commercial and half residential) consume over 70% of the electricity among all the consumption units in the United States. Buildings are also responsible for approximately 40% of CO2 emissions, which is more than any other industry sectors. As a result, the initiative smart building which aims to

Buildings (approximately half commercial and half residential) consume over 70% of the electricity among all the consumption units in the United States. Buildings are also responsible for approximately 40% of CO2 emissions, which is more than any other industry sectors. As a result, the initiative smart building which aims to not only manage electrical consumption in an efficient way but also reduce the damaging effect of greenhouse gases on the environment has been launched. Another important technology being promoted by government agencies is the smart grid which manages energy usage across a wide range of buildings in an effort to reduce cost and increase reliability and transparency. As a great amount of efforts have been devoted to these two initiatives by either exploring the smart grid designs or developing technologies for smart buildings, the research studying how the smart buildings and smart grid coordinate thus more efficiently use the energy is currently lacking. In this dissertation, a "system-of-system" approach is employed to develop an integrated building model which consists a number of buildings (building cluster) interacting with smart grid. The buildings can function as both energy consumption unit as well as energy generation/storage unit. Memetic Algorithm (MA) and Particle Swarm Optimization (PSO) based decision framework are developed for building operation decisions. In addition, Particle Filter (PF) is explored as a mean for fusing online sensor and meter data so adaptive decision could be made in responding to dynamic environment. The dissertation is divided into three inter-connected research components. First, an integrated building energy model including building consumption, storage, generation sub-systems for the building cluster is developed. Then a bi-level Memetic Algorithm (MA) based decentralized decision framework is developed to identify the Pareto optimal operation strategies for the building cluster. The Pareto solutions not only enable multiple dimensional tradeoff analysis, but also provide valuable insight for determining pricing mechanisms and power grid capacity. Secondly, a multi-objective PSO based decision framework is developed to reduce the computational effort of the MA based decision framework without scarifying accuracy. With the improved performance, the decision time scale could be refined to make it capable for hourly operation decisions. Finally, by integrating the multi-objective PSO based decision framework with PF, an adaptive framework is developed for adaptive operation decisions for smart building cluster. The adaptive framework not only enables me to develop a high fidelity decision model but also enables the building cluster to respond to the dynamics and uncertainties inherent in the system.
ContributorsHu, Mengqi (Author) / Wu, Teresa (Thesis advisor) / Weir, Jeffery (Thesis advisor) / Wen, Jin (Committee member) / Fowler, John (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2012
151029-Thumbnail Image.png
Description
In the entire supply chain, demand planning is one of the crucial aspects of the production planning process. If the demand is not estimated accurately, then it causes revenue loss. Past research has shown forecasting can be used to help the demand planning process for production. However, accurate forecasting from

In the entire supply chain, demand planning is one of the crucial aspects of the production planning process. If the demand is not estimated accurately, then it causes revenue loss. Past research has shown forecasting can be used to help the demand planning process for production. However, accurate forecasting from historical data is difficult in today's complex volatile market. Also it is not the only factor that influences the demand planning. Factors, namely, Consumer's shifting interest and buying power also influence the future demand. Hence, this research study focuses on Just-In-Time (JIT) philosophy using a pull control strategy implemented with a Kanban control system to control the inventory flow. Two different product structures, serial product structure and assembly product structure, are considered for this research. Three different methods: the Toyota Production System model, a histogram model and a cost minimization model, have been used to find the number of kanbans that was used in a computer simulated Just-In-Time Kanban System. The simulation model was built to execute the designed scenarios for both the serial and assembly product structure. A test was performed to check the significance effects of various factors on system performance. Results of all three methods were collected and compared to indicate which method provides the most effective way to determine number of kanbans at various conditions. It was inferred that histogram model and cost minimization models are more accurate in calculating the required kanbans for various manufacturing conditions. Method-1 fails to adjust the kanbans when the backordered cost increases or when product structure changes. Among the product structures, serial product structures proved to be effective when Method-2 or Method-3 is used to calculate the kanban numbers for the system. The experimental result data also indicated that the lower container capacity collects more backorders in the system, which increases the inventory cost, than the high container capacity for both serial and assembly product structures.
ContributorsSahu, Pranati (Author) / Askin, Ronald G. (Thesis advisor) / Shunk, Dan L. (Thesis advisor) / Fowler, John (Committee member) / Arizona State University (Publisher)
Created2012
150981-Thumbnail Image.png
Description
For more than twenty years, clinical researchers have been publishing data regarding incidence and risk of adverse events (AEs) incurred during hospitalizations. Hospitals have standard operating policies and procedures (SOPP) to protect patients from AE. The AE specifics (rates, SOPP failures, timing and risk factors) during heart failure (HF) hospitalizations

For more than twenty years, clinical researchers have been publishing data regarding incidence and risk of adverse events (AEs) incurred during hospitalizations. Hospitals have standard operating policies and procedures (SOPP) to protect patients from AE. The AE specifics (rates, SOPP failures, timing and risk factors) during heart failure (HF) hospitalizations are unknown. There were 1,722 patients discharged with a primary diagnosis of HF from an academic hospital between January 2005 and December 2007. Three hundred eighty-one patients experienced 566 AEs, classified into four categories: medication (43.9%), infection (18.9%), patient care (26.3%), or procedural (10.9%). Three distinct analyses were performed: 1) patient's perspective of SOPP reliability including cumulative distribution and hazard functions of time to AEs; 2) Cox proportional hazards model to determine independent patient-specific risk factors for AEs; and 3) hospital administration's perspective of SOPP reliability through three years of the study including cumulative distribution and hazard functions of time between AEs and moving range statistical process control (SPC) charts for days between failures of each type. This is the first study, to our knowledge, to consider reliability of SOPP from both the patient's and hospital administration's perspective. AE rates in hospitalized patients are similar to other recently published reports and did not improve during the study period. Operations research methodologies will be necessary to improve reliability of care delivered to hospitalized patients.
ContributorsHuddleston, Jeanne (Author) / Fowler, John (Thesis advisor) / Montgomery, Douglas C. (Thesis advisor) / Gel, Esma (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2012
150733-Thumbnail Image.png
Description
This research by studies the computational performance of four different mixed integer programming (MIP) formulations for single machine scheduling problems with varying complexity. These formulations are based on (1) start and completion time variables, (2) time index variables, (3) linear ordering variables and (4) assignment and positional date variables. The

This research by studies the computational performance of four different mixed integer programming (MIP) formulations for single machine scheduling problems with varying complexity. These formulations are based on (1) start and completion time variables, (2) time index variables, (3) linear ordering variables and (4) assignment and positional date variables. The objective functions that are studied in this paper are total weighted completion time, maximum lateness, number of tardy jobs and total weighted tardiness. Based on the computational results, discussion and recommendations are made on which MIP formulation might work best for these problems. The performances of these formulations very much depend on the objective function, number of jobs and the sum of the processing times of all the jobs. Two sets of inequalities are presented that can be used to improve the performance of the formulation with assignment and positional date variables. Further, this research is extend to single machine bicriteria scheduling problems in which jobs belong to either of two different disjoint sets, each set having its own performance measure. These problems have been referred to as interfering job sets in the scheduling literature and also been called multi-agent scheduling where each agent's objective function is to be minimized. In the first single machine interfering problem (P1), the criteria of minimizing total completion time and number of tardy jobs for the two sets of jobs is studied. A Forward SPT-EDD heuristic is presented that attempts to generate set of non-dominated solutions. The complexity of this specific problem is NP-hard. The computational efficiency of the heuristic is compared against the pseudo-polynomial algorithm proposed by Ng et al. [2006]. In the second single machine interfering job sets problem (P2), the criteria of minimizing total weighted completion time and maximum lateness is studied. This is an established NP-hard problem for which a Forward WSPT-EDD heuristic is presented that attempts to generate set of supported points and the solution quality is compared with MIP formulations. For both of these problems, all jobs are available at time zero and the jobs are not allowed to be preempted.
ContributorsKhowala, Ketan (Author) / Fowler, John (Thesis advisor) / Keha, Ahmet (Thesis advisor) / Balasubramanian, Hari J (Committee member) / Wu, Teresa (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2012
136088-Thumbnail Image.png
Description
This paper will explore how suppliers are being evaluated. It will focus on the automotive industry and the state of supplier relations in two major automotive manufacturers in the United States. A literature review will reveal common supplier metrics across industries and what they attempt to measure. Further exploration into

This paper will explore how suppliers are being evaluated. It will focus on the automotive industry and the state of supplier relations in two major automotive manufacturers in the United States. A literature review will reveal common supplier metrics across industries and what they attempt to measure. Further exploration into the structure and problems at one automotive manufacturer will reveal areas of improvement. Finally, a new balanced scorecard system will be proposed to better measure supplier performance.
ContributorsChan, Catherine Ngar-See (Author) / Pfund, Michele (Thesis director) / Fowler, John (Committee member) / Johnson, Eleni (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Supply Chain Management (Contributor) / Department of Marketing (Contributor)
Created2015-05
135895-Thumbnail Image.png
Description
The purpose of this honors thesis is to discover ways for a large humanitarian organization to more cost effectively manage its fleet of vehicles. The first phase of work involved cleaning the large data set provided by the organization. Next, we used the program STATA to run a Seemingly Unrelated

The purpose of this honors thesis is to discover ways for a large humanitarian organization to more cost effectively manage its fleet of vehicles. The first phase of work involved cleaning the large data set provided by the organization. Next, we used the program STATA to run a Seemingly Unrelated Regression (SUR) to see which variables have the largest effect on the percentage of price decline and total mileage of each vehicle. The SUR model indicated that price decline is most influenced by cumulative minor repairs, total accessories, age, percentage of paved roads, and number of accidents. In addition, total mileage was most affected by percentage of paved roads, cumulative minor repairs, all wheel drive, and age. The final step of the project involved providing recommendations to the humanitarian organization based on the above results. We recommend several changes to their fleet management, including: driver training programs, increasing the amount of preventative maintenance performed on vehicles, and increasing the amount of accessories purchased for each vehicle. Implementing these changes could potentially save the organization millions of dollars due to the scope of its operation.
ContributorsPisauro, Jeffrey (Co-author) / Miller, Michael (Co-author) / Eftekhar, Mahyar (Thesis director) / Maltz, Arnold (Committee member) / Fowler, John (Committee member) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
137573-Thumbnail Image.png
Description
Purpose: This thesis studies the behavior and actions of introverted and extraverted students in regards to preparing for and obtaining a postgraduate position. The purpose of this thesis is to develop an understanding of introverts' and extraverts' approach to the job search process and to provide suggestions to improve the

Purpose: This thesis studies the behavior and actions of introverted and extraverted students in regards to preparing for and obtaining a postgraduate position. The purpose of this thesis is to develop an understanding of introverts' and extraverts' approach to the job search process and to provide suggestions to improve the job search process. Methodology: In addition to research of existing literature, a survey was given to students at the W. P. Carey School of Business at Arizona State University, to determine students' job search behaviors, and to recruiters of organizations who recruit from the W. P. Carey School of Business at Arizona State University to determine what recruiters look for in a candidate. Findings - We found that extraverts are more likely to network online than introverts. Secondly, we found that extraverts are more likely to self-promote their strengths to company recruiters than introverts. Thirdly, we found that introverts are more reserved when it comes to discussing their strengths with company recruiters than extraverts. Fourthly, we found that extraverts are more likely to feel as though they successfully represent themselves to company recruiters than introverts. Additionally, we found that the top three behaviors that recruiters look for in candidates include the candidate being energized about the prospects of working for the organization, that the candidate is knowledgeable about the organization, and that the candidate asks questions and introduces him-or-herself at organization information sessions. The three lowest rated behaviors were that the candidate uses live (in-person) networking to connect with the recruiter, that the candidate is reserved when discussing his/her accomplishments, and that the candidate uses online networking to connect with recruiters.
ContributorsRobles, Margaret (Co-author) / Carroll, Allison (Co-author) / LePine, Marcie (Thesis director) / Pfund, Michele (Committee member) / Harthun, Jyll (Committee member) / Barrett, The Honors College (Contributor) / Hugh Downs School of Human Communication (Contributor) / Department of Supply Chain Management (Contributor)
Created2013-05