Matching Items (4)
154595-Thumbnail Image.png
Description
All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing

All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development.

The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally.

Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering.

The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns.

Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts.
ContributorsKim, Inho (Author) / Chattopadhyay, Aditi (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Mignolet, Marc (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2016
141495-Thumbnail Image.png
Description

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrin (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π* transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D4h symmetry at ground state, a C4v symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.

ContributorsTheisen, Rebekah (Author) / Huang, Liang (Author) / Fleetham, Tyler (Author) / Adams, James (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-07
128520-Thumbnail Image.png
Description

Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or

Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed.

ContributorsFleetham, Tyler (Author) / Choi, Jea-Young (Author) / Choi, Hyung Woo (Author) / Alford, Terry (Author) / Jeong, Doo Seok (Author) / Lee, Taek Sung (Author) / Lee, Wook Seong (Author) / Lee, Kyeong-Seok (Author) / Li, Jian (Author) / Kim, Inho (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-21
127919-Thumbnail Image.png
Description

A tetradentate Pd(II) complex, Pd3O3, which exhibits highly efficient excimer emission is synthesized and characterized. Pd3O3 can achieve blue emission despite using phenyl-pyridine emissive ligands which have been a mainstay of stable green and red phosphorescent emitter designs, making Pd3O3 a good candidate for stable blue or white OLEDs. Pd3O3

A tetradentate Pd(II) complex, Pd3O3, which exhibits highly efficient excimer emission is synthesized and characterized. Pd3O3 can achieve blue emission despite using phenyl-pyridine emissive ligands which have been a mainstay of stable green and red phosphorescent emitter designs, making Pd3O3 a good candidate for stable blue or white OLEDs. Pd3O3 exhibits strong and efficient phosphorescent excimer emission expanding the excimer based white OLEDs beyond the sole class of Pt complexes. Devices of Pd3O3 demonstrate peak external quantum efficiencies as high as 24.2% and power efficiencies of 67.9 Lm per W for warm white devices. Furthermore, Pd3O3 devices in a carefully designed stable structure achieved a device operational lifetime of nearly 3000 h at 1000 cd m-2 without any outcoupling enhancement while simultaneously achieving peak external quantum efficiencies of 27.3% and power efficiencies over 81 Lm per W.

ContributorsFleetham, Tyler (Author) / Ji, Yunlong (Author) / Huang, Liang (Author) / Fleetham, Trenten (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-09-11