Matching Items (68)
Filtering by

Clear all filters

128527-Thumbnail Image.png
Description

Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid

Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres’ surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

ContributorsMarchi, S. (Author) / Ermakov, A. I. (Author) / Raymond, C. A. (Author) / Fu, R. R. (Author) / O'Brien, D. P. (Author) / Bland, M. T. (Author) / Ammannito, E. (Author) / De Sanctis, M. C. (Author) / Bowling, T. (Author) / Schenk, P. (Author) / Scully, J. E. C. (Author) / Buczkowski, D. L. (Author) / Williams, David (Author) / Hiesinger, H. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-26
128327-Thumbnail Image.png
Description

Experiments have made important contributions to our understanding of human behavior, including behavior relevant for understanding social-ecological systems. When there is a conflict between individual and group interests in social-ecological systems, social dilemmas occur. From the many types of social-dilemma formulations that are used to study collective action, common-pool resource

Experiments have made important contributions to our understanding of human behavior, including behavior relevant for understanding social-ecological systems. When there is a conflict between individual and group interests in social-ecological systems, social dilemmas occur. From the many types of social-dilemma formulations that are used to study collective action, common-pool resource and public-good dilemmas are most relevant for social-ecological systems. Experimental studies of both common-pool resource and public-good dilemmas have shown that many predictions based on the conventional theory of collective action, which assumes rational, self-interested behavior, do not hold. More cooperation occurs than predicted (Ledyard 1995), “cheap talk” increases cooperation (Ostrom 2006), and participants are willing to invest in sanctioning free riders (Yamagishi 1986, Ostrom et al. 1992, Fehr and Gächter 2000, Chaudhuri 2011). Experiments have also demonstrated a diversity of motivations, which affect individual decisions about cooperation and sanctioning (see Fehr and Fischbacher 2002 and Sobel 2005 for reviews, and Bowles 2008 for policy implications).

Created2015
128200-Thumbnail Image.png
Description

The structure and dynamics of ecosystems can affect the information available to resource users on the state of the common resource and the actions of other resource users. We present results from laboratory experiments that showed that the availability of information about the actions of other participants affected the level

The structure and dynamics of ecosystems can affect the information available to resource users on the state of the common resource and the actions of other resource users. We present results from laboratory experiments that showed that the availability of information about the actions of other participants affected the level of cooperation. Since most participants in commons dilemmas can be classified as conditional cooperators, not having full information about the actions of others may affect their decisions. When participants had more information about others, there was a more rapid reduction of the resource in the first round of the experiment. When communication was allowed, limiting the information available made it harder to develop effective institutional arrangements. When communication was not allowed, there was a more rapid decline of performance in groups where information was limited. In sum, the results suggest that making information available to others can have an important impact on the conditional cooperation and the effectiveness of communication.

Created2013
128201-Thumbnail Image.png
Description

Manual therapy has long been a component of physical rehabilitation programs, especially to treat those in pain. The mechanisms of manual therapy, however, are not fully understood, and it has been suggested that its pain modulatory effects are of neurophysiological origin and may be mediated by the descending modulatory circuit.

Manual therapy has long been a component of physical rehabilitation programs, especially to treat those in pain. The mechanisms of manual therapy, however, are not fully understood, and it has been suggested that its pain modulatory effects are of neurophysiological origin and may be mediated by the descending modulatory circuit. Therefore, the purpose of this review is to examine the neurophysiological response to different types of manual therapy, in order to better understand the neurophysiological mechanisms behind each therapy’s analgesic effects. It is concluded that different forms of manual therapy elicit analgesic effects via different mechanisms, and nearly all therapies appear to be at least partially mediated by descending modulation. Additionally, future avenues of mechanistic research pertaining to manual therapy are discussed.

ContributorsVigotsky, Andrew (Author) / Bruhns, Ryan P. (Author) / College of Health Solutions (Contributor)
Created2015-11-29
135527-Thumbnail Image.png
Description
This project aims to better understand aggression in a cooperative social system, specifically within the ant species Pogonomyrmex Californicus. The queens of some populations of these ants form cooperative associations of unrelated queens during nest foundation, while others prefer to form solitary nests and may show aggression towards unwanted nest

This project aims to better understand aggression in a cooperative social system, specifically within the ant species Pogonomyrmex Californicus. The queens of some populations of these ants form cooperative associations of unrelated queens during nest foundation, while others prefer to form solitary nests and may show aggression towards unwanted nest mates. Because it is difficult to collect large amounts of data from a wild population and laboratory environments cannot capture the scale of nature, we created a computer simulation based on data collected in the lab and the field that emulates the life cycle of this species of ants. By manipulating behavioral and environmental conditions and observing the results we were able to better understand the advantages and disadvantages of showing aggression in this cooperative social system.
Created2016-05
136040-Thumbnail Image.png
Description
Collaborative research is not only a form of social and human capital and a public good, but also a fundamental elicitor of positive Collective Action. Collaborative Research Networks can serve as models of proactive and purposive Collective Action and catalysts of societal change, if they function as more than hubs

Collaborative research is not only a form of social and human capital and a public good, but also a fundamental elicitor of positive Collective Action. Collaborative Research Networks can serve as models of proactive and purposive Collective Action and catalysts of societal change, if they function as more than hubs of research and knowledge. It is the goal of this Honors Thesis to examine the current nature under which collaborative research networks, focused on matters of Global Health or Sustainability, operate., how they are organized, what type of collaboration they engage in, and who collaborates with whom. A better understanding of these types of networks can lead to the formation of more effective networks that can develop innovative solutions to our collective Global Health and Sustainability problems.
ContributorsHodzic, Mirna (Author) / Van Der Leeuw, Sander (Thesis director) / Janssen, Marco (Committee member) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
141482-Thumbnail Image.png
Description

Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global network connectivity and to ask whether there are general rules underlying network function across systems. Here we use motif analysis to determine whether the interactions within social insect colonies resemble the patterns exhibited

Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global network connectivity and to ask whether there are general rules underlying network function across systems. Here we use motif analysis to determine whether the interactions within social insect colonies resemble the patterns exhibited by other animal associations or if they exhibit characteristics of biological regulatory systems. Colonies exhibit a predominance of feed-forward interaction motifs, in contrast to the densely interconnected clique patterns that characterize human interaction and animal social networks. The regulatory motif signature supports the hypothesis that social insect colonies are shaped by selection for network patterns that integrate colony functionality at the group rather than individual level, and demonstrates the utility of this approach for analysis of selection effects on complex systems across biological levels of organization.

ContributorsWaters, James (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-07-16
141487-Thumbnail Image.png
Description

We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams

We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role.

However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as “uphill/downhill” flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy.

These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.

ContributorsFewell, Jennifer (Author) / Armbruster, Dieter (Author) / Ingraham, John (Author) / Petersen, Alexander (Author) / Waters, James (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-11-06