Matching Items (95)
Description
Microalgae-derived lipids are good sources of biofuel, but extracting them involves high cost, energy
expenditure, and environmental risk. Surfactant treatment to disrupt Scenedesmus biomass was evaluated
as a means to make solvent extraction more efficient. Surfactant treatment increased the recovery of fatty
acid methyl ester (FAME) by as much as 16-fold vs. untreated

Microalgae-derived lipids are good sources of biofuel, but extracting them involves high cost, energy
expenditure, and environmental risk. Surfactant treatment to disrupt Scenedesmus biomass was evaluated
as a means to make solvent extraction more efficient. Surfactant treatment increased the recovery of fatty
acid methyl ester (FAME) by as much as 16-fold vs. untreated biomass using isopropanol extraction, and
nearly 100% FAME recovery was possible without any Folch solvent, which is toxic and expensive. Surfactant
treatment caused cell disruption and morphological changes to the cell membrane, as documented by
transmission electron microscopy and flow cytometry. Surfactant treatment made it possible to extract wet
biomass at room temperature, which avoids the expense and energy cost associated with heating
and drying of biomass during the extraction process. The best FAME recovery was obtained from highlipid
biomass treated with Myristyltrimethylammonium bromide (MTAB)- and 3-(decyldimethylammonio)-
propanesulfonate inner salt (3_DAPS)-surfactants using a mixed solvent (hexane : isopropanol = 1 : 1, v/v)
vortexed for just 1 min; this was as much as 160-fold higher than untreated biomass. The critical micelle
concentration of the surfactants played a major role in dictating extraction performance, but the growth
stage of the biomass had an even larger impact on how well the surfactants disrupted the cells and
improved lipid extraction. Surfactant treatment had minimal impact on extracted-FAME profiles and,
consequently, fuel-feedstock quality. This work shows that surfactant treatment is a promising strategy for
more efficient, sustainable, and economical extraction of fuel feedstock from microalgae.
Created2015-10-20
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
130394-Thumbnail Image.png
Description

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of diets that differ in elemental composition, stoichiometric theory can inform predictions about dietary effects on excretion ratios.
We conducted a meta-analysis to test the effects of diet elemental composition on consumption and nutrient excretion by fish. We examined the relationship between consumption rate and diet N : P across all laboratory studies and calculated effect sizes for each excretion metric to test for significant effects.
Consumption rate of N, but not P, was significantly negatively affected by diet N : P. Effect sizes of diet elemental composition on consumption-specific excretion N, P and N : P in laboratory studies were all significantly different from 0, but effect size for raw excretion N : P was not significantly different from zero in laboratory or field surveys.
Our results highlight the importance of having a mechanistic understanding of the drivers of consumer excretion rates and ratios. We suggest that more research is needed on how consumption and assimilation efficiency vary with N : P and in natural ecosystems in order to further understand mechanistic processes in consumer-driven nutrient recycling.

ContributorsMoody, Eric (Author) / Corman, Jessica (Author) / Elser, James (Author) / Sabo, John (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-03-01
Description
Using a CH[subscript 4]-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO[subscript 4]–) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO[subscript 3]–) and nitrite (NO[subscript 2]–) surface loadings on ClO[subscript 4]– reduction and on the biofilm community’s mechanism

Using a CH[subscript 4]-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO[subscript 4]–) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO[subscript 3]–) and nitrite (NO[subscript 2]–) surface loadings on ClO[subscript 4]– reduction and on the biofilm community’s mechanism for ClO[subscript 4]– reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO[subscript 4]– to a nondetectable level using CH[subscript 4] as the only electron donor and carbon source when CH[subscript 4] delivery was not limiting; NO[subscript 3]– was completely reduced as well when its surface loading was ≤0.32 g N/m[superscript 2]-d. When CH[subscript 4] delivery was limiting, NO[subscript 3]– inhibited ClO[subscript 4]– reduction by competing for the scarce electron donor. NO[subscript 2]– inhibited ClO[subscript 4]– reduction when its surface loading was ≥0.10 g N/m[superscript 2]-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO[subscript 4]–-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO[subscript 4]– reduction by the MBfR biofilm involved chlorite (ClO[subscript 2]–) dismutation to generate the O[subscript 2] needed as a cosubstrate for the mono-oxygenation of CH[subscript 4].
ContributorsLuo, Yi-Hao (Author) / Chen, Ran (Author) / Wen, Li-Lian (Author) / Meng, Fan (Author) / Zhang, Yin (Author) / Lai, Chun-Yu (Author) / Rittmann, Bruce (Author) / Zhao, He-Ping (Author) / Zheng, Ping (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2015-02-17
130397-Thumbnail Image.png
Description
UV photolysis was used to relieve inhibition of biomass growth by sulfadiazine (SD), a broad-spectrum anti-microbial. To investigate the effects of SD on biomass growth, three substrates—glucose alone (G), glucose plus sulfadiazine (G+SD), and glucose plus photolyzed SD (G+PSD)—were used to culture the bacteria acclimated to glucose. The biomass was

UV photolysis was used to relieve inhibition of biomass growth by sulfadiazine (SD), a broad-spectrum anti-microbial. To investigate the effects of SD on biomass growth, three substrates—glucose alone (G), glucose plus sulfadiazine (G+SD), and glucose plus photolyzed SD (G+PSD)—were used to culture the bacteria acclimated to glucose. The biomass was strongly inhibited when SD was added into the glucose solution, but inhibition was relieved to a significant degree when the SD was treated with UV irradiation as a pretreatment. The biomass growth kinetics were described well by the Monod model when glucose was used as a substrate alone, but the kinetics followed a hybrid Aiba model for non-competitive inhibition when SD was added to the solution. When photolyzed SD was added to glucose solution to replace original SD, the growth still followed Aiba inhibition, but inhibition was significantly relieved: the maximum specific growth rate (μ[subscript max]) increased by 17 %, and the Aiba inhibition concentration increased by 60 %. Aniline, a major product of UV photolysis, supported the growth of the glucose-biodegrading bacteria. Thus, UV photolysis of SD significantly relieved inhibition by lowering the SD concentration and by generating a biodegradable product.
ContributorsPan, Shihui (Author) / Yan, Ning (Author) / Zhang, Yongming (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2015-05-01
130399-Thumbnail Image.png
Description
Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that

Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%.
Created2015-03-01
130400-Thumbnail Image.png
Description
Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily

Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer–resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer–resource type system of a population of individuals classified by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are affected by particularly devastating overly adapted populations, namely cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.
Created2015-02-01
130326-Thumbnail Image.png
Description

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH[subscript 3]-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

Created2016-08-11
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25
130333-Thumbnail Image.png
Description
The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done

The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.
ContributorsYu, Qiang (Author) / Wu, Honghui (Author) / He, Nianpeng (Author) / Lu, Xiaotao (Author) / Wang, Zhiping (Author) / Elser, James (Author) / Wu, Jianguo (Author) / Han, Xingguo (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2012-03-13