Matching Items (210)
150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
Description
The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them

The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them separately in a music studio, then mixed them together into one recording. This document focuses on the critical investigation and description of the piece with a brief theoretical analysis, a discussion of performance difficulties, and guitar preparation. The composer approved the use and the scope of this project. Bryan Johanson is one of the leading contemporary composers for the guitar today. 13 Ways of Looking at 12 Strings is a unique guitar dictionary that takes us from Bach to Hendrix and highlights the unique capabilities of the instrument. It utilizes encoded messages, glass slides, metal mutes, explosive "riffs," rhythmic propulsion, improvisation, percussion, fugual writing, and much more. It has a great potential to make the classical guitar attractive to wider audiences, not limited only to guitarists and musicians. The main resources employed in researching this document are existing recordings of Johanson's other compositions and documentation of his personal views and ideas. This written document uses the composer's prolific and eclectic compositional output in order to draw conclusions and trace motifs. This project is a significant and original contribution in expanding the guitar's repertoire, and it uniquely contributes to bringing forth a significant piece of music.
ContributorsSavic, Nenad (Author) / Koonce, Frank (Thesis advisor) / Rotaru, Catalin (Committee member) / McLin, Katherine (Committee member) / Feisst, Sabine (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2011
149672-Thumbnail Image.png
Description
The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions

The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions of dimethyl phosphite (DMHP), dimethyl methylphosphonate (DMMP), dimethyl ethylphosphonate (DMEP), diethyl ethylphosphonate (DEEP), and triethyl phosphate (TEP) with amorphous silica (a-silica), ã-alumina, and monoclinic zirconia (m-zirconia) for applications in air pollution control. Interactions of the selected OPs with a-silica were chosen as a baseline to determine the applicability of the computational predictions. Based on the a-silica results, computational methods were deemed valid for predicting the trends among materials with comparable interactions (e.g. -OH functionality of a-silica interacting with the phosphonyl O atoms of the OPs). Computational evaluations of the interactions with the OPs were extended to the oxide material, m-zirconia, and compared with the results for ã-alumina. It was hypothesized that m-zirconia had the potential to provide for the effective sorption of OPs in a manner superior to that of the a-silica and the ã-alumina surfaces due to the surface charges of the zirconium Lewis acid sites when coordinated in the oxidized form. Based on the computational study, the predicted heats of adsorption for the selected OPs onto m-zirconia were more favorable than those that were predicted for ã-alumina and a-silica. Experimental studies were carried out to confirm these computational results. M-zirconia nanoparticles were synthesized to determine if the materials could be utilized for the adsorption of the selected OPs. M-zirconia was shown to adsorb the OPs, and the heats of adsorption were stronger than those determined for commercial samples of a-silica. However, water interfered with the adsorption of the OPs onto m-zirconia, thus leading to heats of adsorption that were much weaker than those predicted computationally. Nevertheless, this work provides a first investigation of m-zirconia as a viable sorbent material for the ambient control of the selected gaseous OPs. Additionally, this work represents the first comparative study between computational predictions and experimental determination of thermodynamic properties for the interactions of the selected OPs and oxide surfaces.
ContributorsSiu, Eulalia Yuen-Yi (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica S (Committee member) / Hristovski, Kiril (Committee member) / Nielsen, David R (Committee member) / Pfeffer, Robert (Committee member) / Arizona State University (Publisher)
Created2011
149724-Thumbnail Image.png
Description
This composition was commissioned by the Orgelpark to be performed in Amsterdam in September 2011 during Gaudeamus Muziekweek. It will be performed by the vocal group VocaalLab Nederland. It is scored for four vocalists, organ, tanpura, and electronic sound. The work is a culmination of my studies in South Indian

This composition was commissioned by the Orgelpark to be performed in Amsterdam in September 2011 during Gaudeamus Muziekweek. It will be performed by the vocal group VocaalLab Nederland. It is scored for four vocalists, organ, tanpura, and electronic sound. The work is a culmination of my studies in South Indian Carnatic rhythm, North Indian classical singing, and American minimalism. It is a meditation on the idea that the drone and pulse are micro/macro aspects of the same phenomenon of vibration. Cycles are created on the macroscale through a mathematically defined scale of harmonic/pitch relationships. Cycles are created on the microscale through the subdivision and addition of rhythmic pulses.
ContributorsAdler, Jacob (Composer) / Rockmaker, Jody (Thesis advisor) / Feisst, Sabine (Committee member) / Etezady, Roshanne, 1973- (Committee member) / Arizona State University (Publisher)
Created2011
149765-Thumbnail Image.png
Description
The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC was synthesized by hydrolysis of Fe(III) salts under two Fe

The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC was synthesized by hydrolysis of Fe(III) salts under two Fe (III) initial dosages (0.5M and 2M) and two hydrolysis periods (24 hrs and 72 hrs). The iron content of the fabricated Fe-GAC media ranged from 0.9% to 4.4% Fe/g of the dry media. Pseudo-equilibrium batch test data at pH = 7.7±0.2 in 1mM NaHCO3 buffered ultrapure water and challenge groundwater representative of the Arizona Mexico border region were fitted to a Freundlich isotherm model. The findings suggested that the arsenic adsorption capacity of the metal (hydr)oxide modified GAC media is primarily controlled by the surface area of the media, while the metal content exhibited lesser effect. The adsorption capacity of the media in the model Mexican groundwater matrix was significantly lower for all adsorbent media. Continuous flow short bed adsorber tests (SBA) demonstrated that the adsorption capacity for arsenic in the challenge groundwater was reduced by a factor of 3 to 4 as a result of the mass transport effects. When compared on metal basis, the iron (hydr)oxide modified media performed comparably well as existing commercial media for treatment of arsenic. On dry mass basis, the fabricated media in this study removed less arsenic than their commercial counterparts because the metal content of the commercial media was significantly higher.
ContributorsJain, Arti (Author) / Hristovski, Kiril (Thesis advisor) / Olson, Larry (Committee member) / Madar, David (Committee member) / Edwards, David (Committee member) / Arizona State University (Publisher)
Created2011
149661-Thumbnail Image.png
Description
Maricopa County has exceeded the 24 hour National Ambient Air Quality Standard (NAAQS) for Particulate Matter 10 micrometers in diameter or smaller (PM-10) of 150 micrograms per meter cubed (μg/m3) since 1990. Construction and construction related activities have been recognized as the highest contributors to high PM-10 levels. An analysis

Maricopa County has exceeded the 24 hour National Ambient Air Quality Standard (NAAQS) for Particulate Matter 10 micrometers in diameter or smaller (PM-10) of 150 micrograms per meter cubed (μg/m3) since 1990. Construction and construction related activities have been recognized as the highest contributors to high PM-10 levels. An analysis of days exceeding 150 μg/m3 for four of Maricopa County‟s monitors that most frequently exceed this level during the years 2007, 2008, and 2009 has been performed. Noted contributors to PM-10 levels have been identified in the study, including earthmoving permits, stationary source permits, vacant lots, and agriculture on two mile radius maps around each monitor. PM-10 levels and wind speeds for each date exceeding 225 μg/m3 were reviewed to find specific weather or anthropogenic sources for the high PM-10 levels. Weather patterns for days where multiple monitors exceed 150 μg/m3 were reviewed to find correlations between daily weather and high PM-10 levels. It was found that areas with more earthmoving permits had fewer days exceeding 150 μg/m3 than areas with more stationary permits, vacant lots, or agriculture. The Higley and Buckeye monitors showed increases in PM-10 levels when winds came from areas covered by agricultural land. West 43rd Avenue and Durango monitors saw PM-10 rise when the winds came in over large stationary sources, like aggregate plants. A correlation between weather events and PM-10 exceedances was also found on multiple monitors for dates both in 2007, and 2009.
ContributorsCook, Heloise (Author) / Olson, Larry (Thesis advisor) / Brown, Albert (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
148174-Thumbnail Image.png
Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

ContributorsLaird, Ashlyn (Author) / Schoepf, Jared (Thesis director) / Westerhoff, Paul (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149817-Thumbnail Image.png
Description
Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers,

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.
ContributorsHill, Hansina Rae (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2011
149657-Thumbnail Image.png
Description
The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to

The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to predict potential problems associated with the newly revised standard. The Toledo CBSA is home to two oil refineries, a glass making industry, several coal fired lime kilns, and a sulfuric acid regeneration plant, The CBSA 3 has coal fired power plants within a 30 mile radius of its center. Additionally, Toledo is a major Great Lakes shipping port visited by both lake and ocean going vessels. As a transportation hub, the area is also traversed by several rail lines which feed four rail switching yards. Impacts of older generation freighters, or "steamers", utilizing high sulfur "Bunker C" fuel oil in the area is also an issue. With the unique challenges presented by an SO2 one hour standard, this study attempted to estimate potential problem areas in advance of any monitoring data being gathered. Based on the publicly available data as inputs, it appears that a significant risk of non-attainment may exist in the Toledo CBSA. However, future on-the-books controls and currently proposed regulatory actions appear to drive the risk below significance by 2015. Any designation as non-attainment should be self-correcting and without need for controls other than those used in these models. The outcomes of this screening study are intended for use as a basis for assessments for other mid-sized, industrial areas without SO2 monitors. The results may also be utilized by industries and planning groups within the Toledo CBSA to address potential issues in advance of monitoring system deployment to lower the risk of attaining long term or perpetual non-attainment status.
ContributorsMyers, Greg Francis (Author) / Olson, Larry (Thesis advisor) / Edwards, David (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011