Matching Items (20)
Filtering by

Clear all filters

168293-Thumbnail Image.png
Description
Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of

Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of edge intelligence, deep learning and network management. The first problem explores the learning of generative models in edge learning setting. Since the learning tasks in similar environments share model similarity, it is plausible to leverage pre-trained generative models from other edge nodes. Appealing to optimal transport theory tailored towards Wasserstein-1 generative adversarial networks, this part aims to develop a framework which systematically optimizes the generative model learning performance using local data at the edge node while exploiting the adaptive coalescence of pre-trained generative models from other nodes. In the second part, a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data, is considered. The unreliable nature of wireless connectivity, togetherwith the constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Therefore, a Stochastic Gradient Descent based bandlimited coordinate descent algorithm is designed for such settings. The third part explores the adaptive traffic engineering algorithms in a dynamic network environment. The ages of traffic measurements exhibit significant variation due to asynchronization and random communication delays between routers and controllers. Inspired by the software defined networking architecture, a controller-assisted distributed routing scheme with recursive link weight reconfigurations, accounting for the impact of measurement ages and routing instability, is devised. The final part focuses on developing a federated learning based framework for traffic reshaping of electric vehicle (EV) charging. The absence of private EV owner information and scattered EV charging data among charging stations motivates the utilization of a federated learning approach. Federated learning algorithms are devised to minimize peak EV charging demand both spatially and temporarily, while maximizing the charging station profit.
ContributorsDedeoglu, Mehmet (Author) / Zhang, Junshan (Thesis advisor) / Kosut, Oliver (Committee member) / Zhang, Yanchao (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2021
168366-Thumbnail Image.png
Description
The growth in speed and density of programmable logic devices, such as Field programmable gate arrays (FPGA), enables sophisticated designs to be created within a short time frame. The flexibility of a programmable device alleviates the difficulty of the integration of a design with a wide range of components on

The growth in speed and density of programmable logic devices, such as Field programmable gate arrays (FPGA), enables sophisticated designs to be created within a short time frame. The flexibility of a programmable device alleviates the difficulty of the integration of a design with a wide range of components on a single chip. FPGAs bring both performance and power efficiency, especially for compute or data-intensive applications. Efficient and accurate mRNA quantification is an essential step for molecular signature identification, disease outcome prediction, and drug development, which is a typical compute- and data-intensive compute workload. In this work, I propose to accelerate mRNA quantification with FPGA implementation. I analyze the performance of mRNA Quantification with FPGA, which shows better or similar performance compared to that of CPU implementation.
ContributorsKim, Kiju (Author) / Fan, Deliang (Thesis advisor) / Cao, Kevin (Committee member) / Zhang, Wei (Committee member) / Arizona State University (Publisher)
Created2022
168367-Thumbnail Image.png
Description
In recent years, there has been significant progress in deep learning and computer vision, with many models proposed that have achieved state-of-art results on various image recognition tasks. However, to explore the full potential of the advances in this field, there is an urgent need to push the processing of

In recent years, there has been significant progress in deep learning and computer vision, with many models proposed that have achieved state-of-art results on various image recognition tasks. However, to explore the full potential of the advances in this field, there is an urgent need to push the processing of deep networks from the cloud to edge devices. Unfortunately, many deep learning models cannot be efficiently implemented on edge devices as these devices are severely resource-constrained. In this thesis, I present QU-Net, a lightweight binary segmentation model based on the U-Net architecture. Traditionally, neural networks consider the entire image to be significant. However, in real-world scenarios, many regions in an image do not contain any objects of significance. These regions can be removed from the original input allowing a network to focus on the relevant regions and thus reduce computational costs. QU-Net proposes the salient regions (binary mask) that the deeper models can use as the input. Experiments show that QU-Net helped achieve a computational reduction of 25% on the Microsoft Common Objects in Context (MS COCO) dataset and 57% on the Cityscapes dataset. Moreover, QU-Net is a generalizable model that outperforms other similar works, such as Dynamic Convolutions.
ContributorsSanthosh Kumar Varma, Rahul (Author) / Yang, Yezhou (Thesis advisor) / Fan, Deliang (Committee member) / Yang, Yingzhen (Committee member) / Arizona State University (Publisher)
Created2021
189327-Thumbnail Image.png
Description
In recent years, the proliferation of deep neural networks (DNNs) has revolutionized the field of artificial intelligence, enabling advancements in various domains. With the emergence of efficient learning techniques such as quantization and distributed learning, DNN systems have become increasingly accessible for deployment on edge devices. This accessibility brings significant

In recent years, the proliferation of deep neural networks (DNNs) has revolutionized the field of artificial intelligence, enabling advancements in various domains. With the emergence of efficient learning techniques such as quantization and distributed learning, DNN systems have become increasingly accessible for deployment on edge devices. This accessibility brings significant benefits, including real-time inference on the edge, which mitigates communication latency, and on-device learning, which addresses privacy concerns and enables continuous improvement. However, the resource limitations of edge devices pose challenges in equipping them with robust safety protocols, making them vulnerable to various attacks. Two notable attacks that affect edge DNN systems are Bit-Flip Attacks (BFA) and architecture stealing attacks. BFA compromises the integrity of DNN models, while architecture stealing attacks aim to extract valuable intellectual property by reverse engineering the model's architecture. Furthermore, in Split Federated Learning (SFL) scenarios, where training occurs on distributed edge devices, Model Inversion (MI) attacks can reconstruct clients' data, and Model Extraction (ME) attacks can extract sensitive model parameters. This thesis aims to address these four attack scenarios and develop effective defense mechanisms. To defend against BFA, both passive and active defensive strategies are discussed. Furthermore, for both model inference and training, architecture stealing attacks are mitigated through novel defense techniques, ensuring the integrity and confidentiality of edge DNN systems. In the context of SFL, the thesis showcases defense mechanisms against MI attacks for both supervised and self-supervised learning applications. Additionally, the research investigates ME attacks in SFL and proposes countermeasures to enhance resistance against potential ME attackers. By examining and addressing these attack scenarios, this research contributes to the security and privacy enhancement of edge DNN systems. The proposed defense mechanisms enable safer deployment of DNN models on resource-constrained edge devices, facilitating the advancement of real-time applications, preserving data privacy, and fostering the widespread adoption of edge computing technologies.
ContributorsLi, Jingtao (Author) / Chakrabarti, Chaitali (Thesis advisor) / Fan, Deliang (Committee member) / Cao, Yu (Committee member) / Trieu, Ni (Committee member) / Arizona State University (Publisher)
Created2023
189353-Thumbnail Image.png
Description
In recent years, Artificial Intelligence (AI) (e.g., Deep Neural Networks (DNNs), Transformer) has shown great success in real-world applications due to its superior performance in various cognitive tasks. The impressive performance achieved by AI models normally accompanies the cost of enormous model size and high computational complexity, which significantly hampers

In recent years, Artificial Intelligence (AI) (e.g., Deep Neural Networks (DNNs), Transformer) has shown great success in real-world applications due to its superior performance in various cognitive tasks. The impressive performance achieved by AI models normally accompanies the cost of enormous model size and high computational complexity, which significantly hampers their implementation on resource-limited Cyber-Physical Systems (CPS), Internet-of-Things (IoT), or Edge systems due to their tightly constrained energy, computing, size, and memory budget. Thus, the urgent demand for enhancing the \textbf{Efficiency} of DNN has drawn significant research interests across various communities. Motivated by the aforementioned concerns, this doctoral research has been mainly focusing on Enabling Deep Learning at Edge: From Efficient and Dynamic Inference to On-Device Learning. Specifically, from the inference perspective, this dissertation begins by investigating a hardware-friendly model compression method that effectively reduces the size of AI model while simultaneously achieving improved speed on edge devices. Additionally, due to the fact that diverse resource constraints of different edge devices, this dissertation further explores dynamic inference, which allows for real-time tuning of inference model size, computation, and latency to accommodate the limitations of each edge device. Regarding efficient on-device learning, this dissertation starts by analyzing memory usage during transfer learning training. Based on this analysis, a novel framework called "Reprogramming Network'' (Rep-Net) is introduced that offers a fresh perspective on the on-device transfer learning problem. The Rep-Net enables on-device transferlearning by directly learning to reprogram the intermediate features of a pre-trained model. Lastly, this dissertation studies an efficient continual learning algorithm that facilitates learning multiple tasks without the risk of forgetting previously acquired knowledge. In practice, through the exploration of task correlation, an interesting phenomenon is observed that the intermediate features are highly correlated between tasks with the self-supervised pre-trained model. Building upon this observation, a novel approach called progressive task-correlated layer freezing is proposed to gradually freeze a subset of layers with the highest correlation ratios for each task leading to training efficiency.
ContributorsYang, Li (Author) / Fan, Deliang (Thesis advisor) / Seo, Jae-Sun (Committee member) / Zhang, Junshan (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2023
Description
ABSTRACT With the fast development of industry, it brings indelible pollution to the natural environment. As a consequence, the air quality is getting worse which will seriously affect people's health. With such concern, continuous air quality monitoring and prediction are necessary. Traditional air quality monitoring methods cannot use

ABSTRACT With the fast development of industry, it brings indelible pollution to the natural environment. As a consequence, the air quality is getting worse which will seriously affect people's health. With such concern, continuous air quality monitoring and prediction are necessary. Traditional air quality monitoring methods cannot use large amount of historical data to make accurate predic-tions. Moreover, the traditional prediction method can only roughly predict the air quality level in a short time. With the development of artificial intelligence al-gorithms [1] and high performance computing, the latest mathematical methods and algorithms are able to generate much more accurate predictions based on long term past data. In this master thesis project, it explore to develop deep learning based air quality prediction based on real sensor network time series air quality data from STAIR system [3].
ContributorsZhou, Zeming (Author) / Fan, Deliang (Thesis advisor) / Cao, Yu (Committee member) / Yu, Haofei (Committee member) / Arizona State University (Publisher)
Created2023
171744-Thumbnail Image.png
Description
Convolutional neural networks(CNNs) achieve high accuracy on large datasets but requires significant computation and storage requirement for training/testing. While many applications demand low latency and energy-efficient processing of the images, deploying these complex algorithms on the hardware is a challenging task. This dissertation first presents a compiler-based CNN training accelerator

Convolutional neural networks(CNNs) achieve high accuracy on large datasets but requires significant computation and storage requirement for training/testing. While many applications demand low latency and energy-efficient processing of the images, deploying these complex algorithms on the hardware is a challenging task. This dissertation first presents a compiler-based CNN training accelerator using DDR3 and HBM2 memory. An optimized RTL library is implemented to perform training-specific tasks and an RTL compiler is developed to generate FPGA-synthesizable RTL based on user-defined constraints. High Bandwidth Memory(HBM) provides efficient off-chip communication and improves the training performance. The impact of HBM2 on CNN training workloads is analyzed and compressively compared with DDR3. For training ResNet-20/VGG-like CNNs for the CIFAR-10 dataset, the proposed CNN training accelerator on Stratix-10 GX FPGA(DDR3) demonstrates 479 GOPS performance, and on Stratix-10 MX FPGA(HBM) shows 4.5/9.7 X energy-efficiency improvement compared to Tesla V100 GPU. Next, the FPGA online learning accelerator is presented. Adopting model segmentation techniques from Progressive Segmented Training(PST), the online learning accelerator achieved a 4.2X reduction in training latency. Furthermore, this dissertation presents an 8-bit floating-point (FP8) training processor which implements (1) Highly parallel tensor cores that maintain high PE utilization, (2) Hardware-efficient channel gating for dynamic output activation sparsity (3) Dynamic weight sparsity based on group Lasso (4) Gradient skipping based on FP prediction error. The 28nm prototype chip demonstrates significant improvements in FLOPs reduction (7.3×), energy efficiency (16.4 TFLOPS/W), and overall training latency speedup (4.7×) for both supervised training and self-supervised training tasks. In addition to the training accelerators, this dissertation also presents a CNN inference accelerator on ASIC(FixyNN) and FPGA(FixyFPGA). FixyNN consists of a fixed-weight feature extractor that generates ubiquitous CNN features and a conventional programmable CNN accelerator. In the fixed-weight feature extractor, the network weights are hard-coded into hardware and used as a fixed operand for the multiplication. Experimental results demonstrate FixyNN can achieve very high energy efficiencies up to 26.6 TOPS/W, and FixyFPGA achieves $2.34\times$ higher GOPS on ImageNet classification. In summary, this dissertation comprehensively discusses novel architectures of high-performance and energy-efficient ASIC/FPGA CNN inference/training accelerators.
ContributorsKolala Venkataramaniah, Shreyas (Author) / Seo, Jae-Sun (Thesis advisor) / Cao, Yu (Committee member) / Chakrabarti, Chaitali (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2022
171924-Thumbnail Image.png
Description
Many of the advanced integrated circuits in the past used monolithic grade die due to power, performance and cost considerations. Today, heterogenous integration of multiple dies into a single package is possible because of the advancement in packaging. These heterogeneous multi-chiplet systems provide high performance at minimum fabrication cost. The

Many of the advanced integrated circuits in the past used monolithic grade die due to power, performance and cost considerations. Today, heterogenous integration of multiple dies into a single package is possible because of the advancement in packaging. These heterogeneous multi-chiplet systems provide high performance at minimum fabrication cost. The main challenge is to interconnect these chiplets while keeping the power and performance closer to monolithic grade. Intel’s Advanced Interface Bus (AIB) is a short reach interface that offers high bandwidth, power efficient, low latency, and cost effective on-package connectivity between chiplets. It supports flexible interconnection of the chiplets with high speed data transfer. Specifically, it is a die to die parallel interface implemented with multiple configurable channels, routed between micro-bumps. In this work, the AIB model is synthesized in 65nm technology node and a performancemodel is generated. This model generates area, power and latency results for multiple technology nodes using technology scaling methods. For all nodes, the area, power and latency values increase linearly with frequency and number of channels. The bandwidth also increases linearly with the number of input/output lanes, which is a function of the micro-bump pitch. Next, the AIB performance model is integrated with the benchmarking simulator, Scalable In-Memory Acceleration With Mesh (SIAM), to realize a scalable chipletbased end-to-end system. The Ground-Referenced Signaling (GRS) driver model in SIAM is replaced with the AIB model and an end-to-end evaluation of Deep Neural Network (DNN) performance is carried out for two contemporary DNN models. Comparative analysis between SIAM with GRS and SIAM with AIB show that while the area of AIB transmitter is less compared to GRS transmitter, the AIB transmitter offers higher bandwidth than GRS transmitter at the expense of higher energy. Furthermore, SIAM with AIB provides more realistic timing numbers since the NoP driver latency is also taken into consideration.
ContributorsCHERIAN, NINOO SUSAN (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2022
171963-Thumbnail Image.png
Description
The Internet-of-Things (IoT) paradigm is reshaping the ways to interact with the physical space. Many emerging IoT applications need to acquire, process, gain insights from, and act upon the massive amount of data continuously produced by ubiquitous IoT sensors. It is nevertheless technically challenging and economically prohibitive for each IoT

The Internet-of-Things (IoT) paradigm is reshaping the ways to interact with the physical space. Many emerging IoT applications need to acquire, process, gain insights from, and act upon the massive amount of data continuously produced by ubiquitous IoT sensors. It is nevertheless technically challenging and economically prohibitive for each IoT application to deploy and maintain a dedicated large-scale sensor network over distributed wide geographic areas. Built upon the Sensing-as-a-Service paradigm, cloud-sensing service providers are emerging to provide heterogeneous sensing data to various IoT applications with a shared sensing substrate. Cyber threats are among the biggest obstacles against the faster development of cloud-sensing services. This dissertation presents novel solutions to achieve trustworthy IoT sensing-as-a-service. Chapter 1 introduces the cloud-sensing system architecture and the outline of this dissertation. Chapter 2 presents MagAuth, a secure and usable two-factor authentication scheme that explores commercial off-the-shelf wrist wearables with magnetic strap bands to enhance the security and usability of password-based authentication for touchscreen IoT devices. Chapter 3 presents SmartMagnet, a novel scheme that combines smartphones and cheap magnets to achieve proximity-based access control for IoT devices. Chapter 4 proposes SpecKriging, a new spatial-interpolation technique based on graphic neural networks for secure cooperative spectrum sensing which is an important application of cloud-sensing systems. Chapter 5 proposes a trustworthy multi-transmitter localization scheme based on SpecKriging. Chapter 6 discusses the future work.
ContributorsZhang, Yan (Author) / Zhang, Yanchao YZ (Thesis advisor) / Fan, Deliang (Committee member) / Xue, Guoliang (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2022
171895-Thumbnail Image.png
Description
Adversarial threats of deep learning are increasingly becoming a concern due to the ubiquitous deployment of deep neural networks(DNNs) in many security-sensitive domains. Among the existing threats, adversarial weight perturbation is an emerging class of threats that attempts to perturb the weight parameters of DNNs to breach security and privacy.In

Adversarial threats of deep learning are increasingly becoming a concern due to the ubiquitous deployment of deep neural networks(DNNs) in many security-sensitive domains. Among the existing threats, adversarial weight perturbation is an emerging class of threats that attempts to perturb the weight parameters of DNNs to breach security and privacy.In this thesis, the first weight perturbation attack introduced is called Bit-Flip Attack (BFA), which can maliciously flip a small number of bits within a computer’s main memory system storing the DNN weight parameter to achieve malicious objectives. Our developed algorithm can achieve three specific attack objectives: I) Un-targeted accuracy degradation attack, ii) Targeted attack, & iii) Trojan attack. Moreover, BFA utilizes the rowhammer technique to demonstrate the bit-flip attack in an actual computer prototype. While the bit-flip attack is conducted in a white-box setting, the subsequent contribution of this thesis is to develop another novel weight perturbation attack in a black-box setting. Consequently, this thesis discusses a new study of DNN model vulnerabilities in a multi-tenant Field Programmable Gate Array (FPGA) cloud under a strict black-box framework. This newly developed attack framework injects faults in the malicious tenant by duplicating specific DNN weight packages during data transmission between off-chip memory and on-chip buffer of a victim FPGA. The proposed attack is also experimentally validated in a multi-tenant cloud FPGA prototype. In the final part, the focus shifts toward deep learning model privacy, popularly known as model extraction, that can steal partial DNN weight parameters remotely with the aid of a memory side-channel attack. In addition, a novel training algorithm is designed to utilize the partially leaked DNN weight bit information, making the model extraction attack more effective. The algorithm effectively leverages the partial leaked bit information and generates a substitute prototype of the victim model with almost identical performance to the victim.
ContributorsRakin, Adnan Siraj (Author) / Fan, Deliang (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Seo, Jae-Sun (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2022