Matching Items (67)
152127-Thumbnail Image.png
Description
In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate time series. This thesis focuses on (a) defining a simplified inter-related multi-variate time series (IMTS) model and (b) developing robust

In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate time series. This thesis focuses on (a) defining a simplified inter-related multi-variate time series (IMTS) model and (b) developing robust multi-variate temporal (RMT) feature extraction algorithm that can be used for locating, filtering, and describing salient features in multi-variate time series data sets. The proposed RMT feature can also be used for supporting multiple analysis tasks, such as visualization, segmentation, and searching / retrieving based on multi-variate time series similarities. Experiments confirm that the proposed feature extraction algorithm is highly efficient and effective in identifying robust multi-scale temporal features of multi-variate time series.
ContributorsWang, Xiaolan (Author) / Candan, Kasim Selcuk (Thesis advisor) / Sapino, Maria Luisa (Committee member) / Fainekos, Georgios (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
149452-Thumbnail Image.png
Description
Cyber Physical Systems (CPSs) are systems comprising of computational systems that interact with the physical world to perform sensing, communication, computation and actuation. Common examples of these systems include Body Area Networks (BANs), Autonomous Vehicles (AVs), Power Distribution Systems etc. The close coupling between cyber and physical worlds in a

Cyber Physical Systems (CPSs) are systems comprising of computational systems that interact with the physical world to perform sensing, communication, computation and actuation. Common examples of these systems include Body Area Networks (BANs), Autonomous Vehicles (AVs), Power Distribution Systems etc. The close coupling between cyber and physical worlds in a CPS manifests in two types of interactions between computing systems and the physical world: intentional and unintentional. Unintentional interactions result from the physical characteristics of the computing systems and often cause harm to the physical world, if the computing nodes are close to each other, these interactions may overlap thereby increasing the chances of causing a Safety hazard. Similarly, due to mobile nature of computing nodes in a CPS planned and unplanned interactions with the physical world occur. These interactions represent the behavior of a computing node while it is following a planned path and during faulty operations. Both of these interactions change over time due to the dynamics (motion) of the computing node and may overlap thereby causing harm to the physical world. Lack of proper modeling and analysis frameworks for these systems causes system designers to use ad-hoc techniques thereby further increasing their design and development time. The thesis addresses these problems by taking a holistic approach to model Computational, Physical and Cyber Physical Interactions (CPIs) aspects of a CPS and proposes modeling constructs for them. These constructs are analyzed using a safety analysis algorithm developed as part of the thesis. The algorithm computes the intersection of CPIs for both mobile as well as static computing nodes and determines the safety of the physical system. A framework is developed by extending AADL to support these modeling constructs; the safety analysis algorithm is implemented as OSATE plug-in. The applicability of the proposed approach is demonstrated by considering the safety of human tissue during the operations of BAN, and the safety of passengers traveling in an Autonomous Vehicle.
ContributorsKandula, Sailesh Umamaheswara (Author) / Gupta, Sandeep (Thesis advisor) / Lee, Yann Hang (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2010
149560-Thumbnail Image.png
Description
Reducing device dimensions, increasing transistor densities, and smaller timing windows, expose the vulnerability of processors to soft errors induced by charge carrying particles. Since these factors are inevitable in the advancement of processor technology, the industry has been forced to improve reliability on general purpose Chip Multiprocessors (CMPs). With the

Reducing device dimensions, increasing transistor densities, and smaller timing windows, expose the vulnerability of processors to soft errors induced by charge carrying particles. Since these factors are inevitable in the advancement of processor technology, the industry has been forced to improve reliability on general purpose Chip Multiprocessors (CMPs). With the availability of increased hardware resources, redundancy based techniques are the most promising methods to eradicate soft error failures in CMP systems. This work proposes a novel customizable and redundant CMP architecture (UnSync) that utilizes hardware based detection mechanisms (most of which are readily available in the processor), to reduce overheads during error free executions. In the presence of errors (which are infrequent), the always forward execution enabled recovery mechanism provides for resilience in the system. The inherent nature of UnSync architecture framework supports customization of the redundancy, and thereby provides means to achieve possible performance-reliability trade-offs in many-core systems. This work designs a detailed RTL model of UnSync architecture and performs hardware synthesis to compare the hardware (power/area) overheads incurred. It then compares the same with those of the Reunion technique, a state-of-the-art redundant multi-core architecture. This work also performs cycle-accurate simulations over a wide range of SPEC2000, and MiBench benchmarks to evaluate the performance efficiency achieved over that of the Reunion architecture. Experimental results show that, UnSync architecture reduces power consumption by 34.5% and improves performance by up to 20% with 13.3% less area overhead, when compared to Reunion architecture for the same level of reliability achieved.
ContributorsHong, Fei (Author) / Shrivastava, Aviral (Thesis advisor) / Bazzi, Rida (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2011
135810-Thumbnail Image.png
Description
The meta-MAC protocol is a systematic and automatic method to dynamically combine any set of existing Medium Access Control (MAC) protocols into a single higher level MAC protocol. The meta-MAC concept was proposed more than a decade ago, but until now has not been implemented in a testbed environment due

The meta-MAC protocol is a systematic and automatic method to dynamically combine any set of existing Medium Access Control (MAC) protocols into a single higher level MAC protocol. The meta-MAC concept was proposed more than a decade ago, but until now has not been implemented in a testbed environment due to a lack of suitable hardware. This thesis presents a proof-of-concept implementation of the meta-MAC protocol by utilizing a programmable radio platform, the Wireless MAC Processor (WMP), in combination with a host-level software module. The implementation of this host module, and the requirements and challenges faced therein, is the primary subject of this thesis. This implementation can combine, with certain constraints, a set of protocols each represented as an extended finite state machine for easy programmability. To illustrate the combination principle, protocols of the same type but with varying parameters are combined in a testbed environment, in what is termed parameter optimization. Specifically, a set of TDMA protocols with differing slot assignments are experimentally combined. This experiment demonstrates that the meta-MAC implementation rapidly converges to non-conflicting TDMA slot assignments for the nodes, with similar results to those in simulation. This both validates that the presented implementation properly implements the meta-MAC protocol, and verifies that the meta-MAC protocol can be as effective on real wireless hardware as it is in simulation.
ContributorsFlick, Nathaniel Graham (Author) / Syrotiuk, Violet (Thesis director) / Fainekos, Georgios (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148109-Thumbnail Image.png
Description

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment and identification of objects. The challenge posed in perception systems involves verifying the accuracy and rigidity of detections. The use of Spatio-Temporal Perception Logic (STPL) enables the user to express requirements for the perception system to verify, validate, and ensure its behavior; however, a drawback to STPL involves its accessibility. It is limited to individuals with an expert or higher-level knowledge of temporal and spatial logics, and the formal-written requirements become quite verbose with more restrictions imposed. In this thesis, I propose a domain-specific language (DSL) catered to Spatio-Temporal Perception Logic to enable non-expert users the ability to capture requirements for perception subsystems while reducing the necessity to have an experienced background in said logic. The domain-specific language for the Spatio-Temporal Perception Logic is built upon the formal language with two abstractions. The main abstraction captures simple programming statements that are translated to a lower-level STPL expression accepted by the testing monitor. The STPL DSL provides a seamless interface to writing formal expressions while maintaining the power and expressiveness of STPL. These translated equivalent expressions are capable of directing a standard for perception systems to ensure the safety and reduce the risks involved in ill-formed detections.

ContributorsAnderson, Jacob (Author) / Fainekos, Georgios (Thesis director) / Yezhou, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168389-Thumbnail Image.png
Description
A storage system requiring file redundancy and on-line repairability can be represented as a Steiner system, a combinatorial design with the property that every $t$-subset of its points occurs in exactly one of its blocks. Under this representation, files are the points and storage units are the blocks of the

A storage system requiring file redundancy and on-line repairability can be represented as a Steiner system, a combinatorial design with the property that every $t$-subset of its points occurs in exactly one of its blocks. Under this representation, files are the points and storage units are the blocks of the Steiner system, or vice-versa. Often, the popularities of the files of such storage systems run the gamut, with some files receiving hardly any attention, and others receiving most of it. For such systems, minimizing the difference in the collective popularity between any two storage units is nontrivial; this is the access balancing problem. With regard to the representative Steiner system, the access balancing problem in its simplest form amounts to constructing either a point or block labelling: an assignment of a set of integer labels (popularity ranks) to the Steiner system's point set or block set, respectively, requiring of the former assignment that the sums of the labelled points of any two blocks differ as little as possible and of the latter that the sums of the labels assigned to the containing blocks of any two distinct points differ as little as possible. The central aim of this dissertation is to supply point and block labellings for Steiner systems of block size greater than three, for which up to this point no attempt has been made. Four major results are given in this connection. First, motivated by the close connection between the size of the independent sets of a Steiner system and the quality of its labellings, a Steiner triple system of any admissible order is constructed with a pair of disjoint independent sets of maximum cardinality. Second, the spectrum of resolvable Bose triple systems is determined in order to label some Steiner 2-designs with block size four. Third, several kinds of independent sets are used to point-label Steiner 2-designs with block size four. Finally, optimal and close to optimal block labellings are given for an infinite class of 1-rotational resolvable Steiner 2-designs with arbitrarily large block size by exploiting their underlying group-theoretic properties.
ContributorsLusi, Dylan (Author) / Colbourn, Charles J (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fainekos, Georgios (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2021
171513-Thumbnail Image.png
Description
Automated driving systems (ADS) have come a long way since their inception. It is clear that these systems rely heavily on stochastic deep learning techniques for perception, planning, and prediction, as it is impossible to construct every possible driving scenario to generate driving policies. Moreover, these systems need to be

Automated driving systems (ADS) have come a long way since their inception. It is clear that these systems rely heavily on stochastic deep learning techniques for perception, planning, and prediction, as it is impossible to construct every possible driving scenario to generate driving policies. Moreover, these systems need to be trained and validated extensively on typical and abnormal driving situations before they can be trusted with human life. However, most publicly available driving datasets only consist of typical driving behaviors. On the other hand, there is a plethora of videos available on the internet that capture abnormal driving scenarios, but they are unusable for ADS training or testing as they lack important information such as camera calibration parameters, and annotated vehicle trajectories. This thesis proposes a new toolbox, DeepCrashTest-V2, that is capable of reconstructing high-quality simulations from monocular dashcam videos found on the internet. The toolbox not only estimates the crucial parameters such as camera calibration, ego-motion, and surrounding road user trajectories but also creates a virtual world in Car Learning to Act (CARLA) using data from OpenStreetMaps to simulate the estimated trajectories. The toolbox is open-source and is made available in the form of a python package on GitHub at https://github.com/C-Aniruddh/deepcrashtest_v2.
ContributorsChandratre, Aniruddh Vinay (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Hani (Thesis advisor) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2022
155908-Thumbnail Image.png
Description
User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is

User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven approach to predicting power and performance. The approach makes no assumptions on the distributions of the underlying sources of uncertainty and is capable of predicting power and performance with over 93% accuracy.

Using this data-driven prediction framework, a closed-loop solution to the DEM problem is derived to maximize the energy efficiency of the mobile device subject to various thermal, reliability and deadline constraints. The design of the controller imposes minimal operational overhead and is able to tune the performance and power prediction models to changing system conditions. The proposed controller is implemented on a real mobile platform, the Google Pixel smartphone, and demonstrates a 19% improvement in energy efficiency over the standard frequency governor implemented on all Android devices.
ContributorsGaudette, Benjamin David (Author) / Vrudhula, Sarma (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Fainekos, Georgios (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2017
171515-Thumbnail Image.png
Description
The notion of the safety of a system when placed in an environment with humans and other machines has been one of the primary concerns of practitioners while deploying any cyber-physical system (CPS). Such systems, also called safety-critical systems, need to be exhaustively tested for erroneous behavior. This generates the

The notion of the safety of a system when placed in an environment with humans and other machines has been one of the primary concerns of practitioners while deploying any cyber-physical system (CPS). Such systems, also called safety-critical systems, need to be exhaustively tested for erroneous behavior. This generates the need for coming up with algorithms that can help ascertain the behavior and safety of the system by generating tests for the system where they are likely to falsify. In this work, three algorithms have been presented that aim at finding falsifying behaviors in cyber-physical Systems. PART-X intelligently partitions while sampling the input space to provide probabilistic point and region estimates of falsification. PYSOAR-C and LS-EMIBO aims at finding falsifying behaviors in gray-box systems when some information about the system is available. Specifically, PYSOAR-C aims to find falsification while maximizing coverage using a two-phase optimization process, while LS-EMIBO aims at exploiting the structure of a requirement to find falsifications with lower computational cost compared to the state-of-the-art. This work also shows the efficacy of the algorithms on a wide range of complex cyber-physical systems. The algorithms presented in this thesis are available as python toolboxes.
ContributorsKhandait, Tanmay Bhaskar (Author) / Pedrielli, Giulia (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Gopalan, Nakul (Committee member) / Arizona State University (Publisher)
Created2022
171516-Thumbnail Image.png
Description
In recent years, the development of Control Barrier Functions (CBF) has allowed safety guarantees to be placed on nonlinear control affine systems. While powerful as a mathematical tool, CBF implementations on systems with high relative degree constraints can become too computationally intensive for real-time control. Such deployments typically rely on

In recent years, the development of Control Barrier Functions (CBF) has allowed safety guarantees to be placed on nonlinear control affine systems. While powerful as a mathematical tool, CBF implementations on systems with high relative degree constraints can become too computationally intensive for real-time control. Such deployments typically rely on the analysis of a system's symbolic equations of motion, leading to large, platform-specific control programs that do not generalize well. To address this, a more generalized framework is needed. This thesis provides a formulation for second-order CBFs for rigid open kinematic chains. An algorithm for numerically computing the safe control input of a CBF is then introduced based on this formulation. It is shown that this algorithm can be used on a broad category of systems, with specific examples shown for convoy platooning, drone obstacle avoidance, and robotic arms with large degrees of freedom. These examples show up to three-times performance improvements in computation time as well as 2-3 orders of magnitude in the reduction in program size.
ContributorsPietz, Daniel Johannes (Author) / Fainekos, Georgios (Thesis advisor) / Vrudhula, Sarma (Thesis advisor) / Pedrielli, Giulia (Committee member) / Pavlic, Theodore (Committee member) / Arizona State University (Publisher)
Created2022