Matching Items (177)
135925-Thumbnail Image.png
Description
Backscattered electron microscopy, in tandem with energy dispersive X-ray analysis, reveals evidence that multiple processes work in tandem to generate tafoni development in Oman, Papago Park and Picketpost Mountain, AZ. Carbonate precipitation into Papago Park sedimentary breccia wedges apart the host rock, and then dissolves to leave behind uncemented fragments.

Backscattered electron microscopy, in tandem with energy dispersive X-ray analysis, reveals evidence that multiple processes work in tandem to generate tafoni development in Oman, Papago Park and Picketpost Mountain, AZ. Carbonate precipitation into Papago Park sedimentary breccia wedges apart the host rock, and then dissolves to leave behind uncemented fragments. Oman tafoni also show evidence of carbonate precipitation as a wedging agent, in addition to dissolution of the host carbonate rock and a possible role for organics that occupy some pore spaces. Tafoni in Picketpost Mountain welded tuff displays evidence of multiple processes including: dissolution of glassy groundmass; biotite splitting surrounding minerals; reprecipitation of a variant of silica glaze; and erosion of the tuff after the rock weakens sufficiently. All three sites have in common the synergism of chemical and physical processes operating at the micron scale, where dissolution opens space for physical wedging to operate by carbonate precipitation and biotite splitting. The execution of multiple processes to generate a common form supports the idea of equifinality in tafoni formation.
ContributorsKaba, Emily (Author) / Dorn, Ronald I. (Thesis director) / Cerveny, Niccole V. (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136256-Thumbnail Image.png
Description
"Gastrodiplomacy: Opening Minds by Filling Stomachs" explores the role of food as an instrument of cross-cultural exchange and understanding, in three parts: why food is an ideal medium of communication, how food exchange can be an effective catalyst of conflict resolution, and a study that highlights the relationship between ethnic

"Gastrodiplomacy: Opening Minds by Filling Stomachs" explores the role of food as an instrument of cross-cultural exchange and understanding, in three parts: why food is an ideal medium of communication, how food exchange can be an effective catalyst of conflict resolution, and a study that highlights the relationship between ethnic food consumption and positive or negative stereotyping of racial and ethnic groups. The study revealed that those who ate food that lies beyond their culture's traditional culinary boundaries fairly often were more likely to have a higher opinion of different racial and ethnic groups; those who rarely strayed beyond those boundaries were more likely to negatively stereotype different cultures. "Gastrodiplomacy" works its way through the foods of the world, and how innately geography, food, and politics are connected, whether it's through French discrimination against kebabs \u2014 a traditionally Middle Eastern food \u2014 or through the use of the dolma to help settle long-standing disputes between the warring countries of Armenia and Azerbaijan.
Created2015-05
136258-Thumbnail Image.png
Description
Physicians generally agree that immunizations save lives, but parents are starting to opt out of vaccinations for their children at alarmingly high levels. This has caused a debate. Some feel that full immunization coverage is essential to this country's future. Others are choosing alternative medicines and taking their chances with

Physicians generally agree that immunizations save lives, but parents are starting to opt out of vaccinations for their children at alarmingly high levels. This has caused a debate. Some feel that full immunization coverage is essential to this country's future. Others are choosing alternative medicines and taking their chances with deadly diseases. I first became truly aware of the vaccine debate when my baby cousin, Jacob, passed away in 2002. He was 1 years old. Jacob contracted seizures soon after receiving the routine MMR vaccine. Doctors signed papers contributing his death to a severe reaction to the MMR vaccine, and my aunt and uncle were given a $250,000 settlement for their pain and suffering. My family has been involved in the vaccine world for nearly 15 years, and it is this involvement that drove me to want produce a documentary about immunizations. To view the documentary visit: https://www.youtube.com/watch?v=ZqW7fEntc1A
Created2015-05
130375-Thumbnail Image.png
Description
This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open

This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open geospatial analytics for decision support. A common thread throughout the discussion is the emphasis on openness, interoperability, and provenance management in a scientific workflow. The code base of the PySAL library provides the common computing framework underlying all delivery mechanisms.
ContributorsRey, Sergio (Author) / Anselin, Luc (Author) / Li, Xun (Author) / Pahle, Robert (Author) / Laura, Jason (Author) / Li, Wenwen (Author) / Koschinsky, Julia (Author) / College of Liberal Arts and Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Computational Spatial Science (Contributor)
Created2015-06-01
130391-Thumbnail Image.png
Description
Estimating and projecting population trends using population viability analysis (PVA) are central to identifying species at risk of extinction and for informing conservation management strategies. Models for PVA generally fall within two categories, scalar (count-based) or matrix (demographic). Model structure, process error, measurement error, and time series length all have

Estimating and projecting population trends using population viability analysis (PVA) are central to identifying species at risk of extinction and for informing conservation management strategies. Models for PVA generally fall within two categories, scalar (count-based) or matrix (demographic). Model structure, process error, measurement error, and time series length all have known impacts in population risk assessments, but their combined impact has not been thoroughly investigated. We tested the ability of scalar and matrix PVA models to predict percent decline over a ten-year interval, selected to coincide with the IUCN Red List criterion A. 3, using data simulated for a hypothetical, short-lived organism with a simple life-history and for a threatened snail, Tasmaphena lamproides. PVA performance was assessed across different time series lengths, population growth rates, and levels of process and measurement error. We found that the magnitude of effects of measurement error, process error, and time series length, and interactions between these, depended on context. We found that high process and measurement error reduced the reliability of both models in predicted percent decline. Both sources of error contributed strongly to biased predictions, with process error tending to contribute to the spread of predictions more than measurement error. Increasing time series length improved precision and reduced bias of predicted population trends, but gains substantially diminished for time series lengths greater than 10-15 years. The simple parameterization scheme we employed contributed strongly to bias in matrix model predictions when both process and measurement error were high, causing scalar models to exhibit similar or greater precision and lower bias than matrix models. Our study provides evidence that, for short-lived species with structured but simple life histories, short time series and simple models can be sufficient for reasonably reliable conservation decision-making, and may be preferable for population projections when unbiased estimates of vital rates cannot be obtained.
Created2015-07-15
130396-Thumbnail Image.png
Description

Aim
To establish a chronology for late Quaternary avian extinction, extirpation and persistence in the Bahamas, thereby testing the relative roles of climate change and human impact as causes of extinction.
Location
Great Abaco Island (Abaco), Bahamas, West Indies.
Methods
We analysed the resident bird community as sampled by Pleistocene (> 11.7 ka) and Holocene

Aim
To establish a chronology for late Quaternary avian extinction, extirpation and persistence in the Bahamas, thereby testing the relative roles of climate change and human impact as causes of extinction.
Location
Great Abaco Island (Abaco), Bahamas, West Indies.
Methods
We analysed the resident bird community as sampled by Pleistocene (> 11.7 ka) and Holocene (< 11.7 ka) fossils. Each species was classified as extinct (lost globally), extirpated (gone from Abaco but persists elsewhere), or extant (still resident on Abaco). We compared patterns of extinction, extirpation and persistence to independent estimates of climate and sea level for glacial (late Pleistocene) and interglacial (Holocene) times.
Results
Of 45 bird species identified in Pleistocene fossils, 25 (56%) no longer occur on Abaco (21 extirpated, 4 extinct). Of 37 species recorded in Holocene deposits, 15 (14 extirpated, 1 extinct; total 41%) no longer exist on Abaco. Of the 30 extant species, 12 were recovered as both Pleistocene and Holocene fossils, as were 9 of the 30 extirpated or extinct species. Most of the extinct or extirpated species that were only recorded from Pleistocene contexts are characteristic of open habitats (pine woodlands or grasslands); several of the extirpated species are currently found only where winters are cooler than in the modern or Pleistocene Bahamas. In contrast, most of the extinct or extirpated species recorded from Holocene contexts are habitat generalists.
Main conclusions
The fossil evidence suggests two main times of late Quaternary avian extirpation and extinction in the Bahamas. The first was during the Pleistocene–Holocene transition (PHT; 15–9 ka) and was fuelled by climate change and associated changes in sea level and island area. The second took place during the late Holocene (< 4 ka, perhaps primarily < 1 ka) and can be attributed to human impact. Although some species lost during the PHT are currently found where climates are cooler and drier than in the Bahamas today, a taxonomically and ecologically diverse set of species persisted through that major climate change but did not survive the past millennium of human presence.

Created2015-03-01
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25
130331-Thumbnail Image.png
Description
Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on

Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on our efforts to design and develop a geospatial cyberinfrastructure (GCI) for urban economic analysis and simulation. This GCI provides an operational graphic user interface, built upon a service-oriented architecture to allow (1) widespread sharing and seamless integration of distributed geospatial data; (2) an effective way to address the uncertainty and positional errors encountered in fusing data from diverse sources; (3) the decomposition of complex planning questions into atomic spatial analysis tasks and the generation of a web service chain to tackle such complex problems; and (4) capturing and representing provenance of geospatial data to trace its flow in the modeling task. The Greater Los Angeles Region serves as the test bed. We expect this work to contribute to effective spatial policy analysis and decision-making through the adoption of advanced GCI and to broaden the application coverage of GCI to include urban economic simulations.
Created2013-05-21
130335-Thumbnail Image.png
Description
A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective

A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations.
ContributorsConlisk, Erin (Author) / Lawson, Dawn (Author) / Syphard, Alexandra D. (Author) / Franklin, Janet (Author) / Flint, Lorraine (Author) / Flint, Alan (Author) / Regan, Helen M. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2012-05-18
130414-Thumbnail Image.png
Description
Species distribution modeling (SDM) is a methodology that has been widely used in the past two decades for developing quantitative, empirical, predictive models of species–environment relationships. SDM methods could be more broadly applied than they currently are to address research questions in archaeology and paleoanthropology. Specifically, SDM can be used

Species distribution modeling (SDM) is a methodology that has been widely used in the past two decades for developing quantitative, empirical, predictive models of species–environment relationships. SDM methods could be more broadly applied than they currently are to address research questions in archaeology and paleoanthropology. Specifically, SDM can be used to hindcast paleodistributions of species and ecological communities (paleo-SDM) for time periods and locations of prehistoric human occupation. Paleo-SDM may be a powerful tool for understanding human prehistory if used to hindcast the distributions of plants, animals and ecological communities that were key resources for prehistoric humans and to use this information to reconstruct the resource landscapes (paleoscapes) of prehistoric people. Components of the resource paleoscape include species (game animals, food plants), habitats, and geologic features and landforms associated with stone materials for tools, pigments, and so forth. We first review recent advances in SDM as it has been used to hindcast paleodistributions of plants and animals in the field of paleobiology. We then compare the paleo-SDM approach to paleoenvironmental reconstructions modeled from zooarchaeological and archaeobotanical records, widely used in archaeology and paleoanthropology. Next, we describe the less well developed but promising approach of using paleo-SDM methods to reconstruct resource paleoscapes. We argue that paleo-SDM offers an explicitly deductive strategy that generates spatial predictions grounded in strong theoretical understandings of the relation between species, habitat distributions and environment. Because of their limited sampling of space and time, archaeobiological records may be better suited for paleo-SDM validation than directly for paleoenvironmental reconstruction. We conclude by discussing the data requirements, limitations and potential for using predictive modeling to reconstruct resource paleoscapes. There is a need for improved paleoclimate models, improved paleoclimate proxy and species paleodistribution data for model validation, attention to scale issues, and rigorous modeling methods including mechanistic models.
Created2014-12-17