Matching Items (269)
Description

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.

ContributorsRiley, Nicholas (Co-author) / Fusaro, Gerard (Co-author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.

ContributorsFusaro, Gerard Anthony (Co-author) / Riley, Nicholas (Co-author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148169-Thumbnail Image.png
Description

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development of a physical distancing index based on three significant attributes. This index was then compared to the expenditure and case counts to support decision making.
A regression model was developed to analyze and compare how different states case counts played out against the regression model and the risk index.

ContributorsJaisinghani, Shaurya (Author) / Mirchandani, Pitu (Thesis director) / Clough, Michael (Committee member) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Department of Information Systems (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning opportunities. Joystick Education is our approach to addressing this need. Through online, game-based tutoring and a database of video games with high educational value, Joystick Education creates a learning environment that is effective, fun, and engaging for students. We analyzed popular, mainstream video games for educational content and selected nine games that teach concepts like history, biology, or physics while playing the game. Through promotion on social media, we generated buzz around our website which led to 103 unique visitors over our first month online and two customers requesting to book our tutoring service. We are confident that given more time to grow, Joystick Education can generate profit and become a successful business.

ContributorsBarrong, Tanner Allen (Co-author) / Bartels, Parker (Co-author) / VanLue, Aleczander (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147973-Thumbnail Image.png
Description

Due to the vast increase in processing power and energy usage in computing, a need for greater heat dissipation is prevalent. With numerous applications demanding cheaper and more efficient options for thermal management, new technology must be employed. Through the use of additive manufacturing, designs and structures can be created

Due to the vast increase in processing power and energy usage in computing, a need for greater heat dissipation is prevalent. With numerous applications demanding cheaper and more efficient options for thermal management, new technology must be employed. Through the use of additive manufacturing, designs and structures can be created that were not physically possible before without extensive costs. The goal is to design a system that utilizes capillary action, which is the ability for liquids to flow through narrow spaces unassisted. The level of detail required may be achieved with direct metal laser sintering (DMLS) and stereolithography (SLA) 3D printing.

ContributorsFechter, Andrew (Author) / Bhate, Dhruv (Thesis director) / Frank, Daniel (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147989-Thumbnail Image.png
Description

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it is now time to extend off from this framework. With this Honors Thesis project, we introduce a new function intended to eventually become common to drones. This feature is a grasping mechanism that is capable of perching on branches and carrying loads within the weight limit. This concept stems from the natural behavior of many kinds of insects. It paves the way for drones to further imitate the natural design of flying creatures. Additionally, it serves to advocate for dynamic drone frames, or morphing drone frames, to become more common practice in drone designs.

ContributorsMacias, Jose Carlos (Co-author) / Goldenberg, Edward Bradley (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Human Systems Engineering (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147792-Thumbnail Image.png
Description

Mathematical and analytical approach at the floor and diffuser of a Formula 1 vehicle and how they produce downforce. Reaches a conclusion about how engineers and aerodynamicists creates the desired effects underneath the vehicle to produce substantial downforce.

ContributorsMarcantonio, Nicholas Joseph (Author) / Rajadas, John (Thesis director) / Hillery, Scott (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147806-Thumbnail Image.png
Description

The product our team is commercializing is a NASA designed technology designed to store waste in space. This product works on Earth as well and has applicable multi-use capabilities. Throughout the last several months, the team has identified different markets to determine which of them would experience the most value

The product our team is commercializing is a NASA designed technology designed to store waste in space. This product works on Earth as well and has applicable multi-use capabilities. Throughout the last several months, the team has identified different markets to determine which of them would experience the most value from this product. The team conducted 25 interviews to grasp the landscape of the different markets related to this product. After a thorough analysis, it was found that vendors who support the disposal of different types of waste and sludge would be the best fit for this product. Vendors like Waste Management, Sharps, Stericycle, Sludge USA, etc.,” have large contracts with hospitals, biotech firms, labs, and cities to manage a wide spectrum of waste. The companies bring value to their clients by making a difficult process easier. However, the process is not seamless and, with certain types of waste, there are significant costs associated with not following an exact process. Throughout this process and interviews with companies like Sludge USA and Waste Management, the team identified a niche market in supporting sludge processes. Caked: Sludge Management is designed to bring value to this market by making their waste disposal process seamless, and saving these institutions significant costs in the long run, while creating additional value.

ContributorsShapiro, Dylan Michael (Co-author) / Brinson, Stacy (Co-author) / Byrne, Jared (Thesis director) / Patel, Manish (Committee member) / Sebold, Brent (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image,

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image, and likeness. The goal of the team was to help “prepare athletes to understand and properly navigate the evolving restrictions and guidelines around athlete name, image, and likeness”. In order to accomplish this, the team had to understand the problems student-athletes face with these changing rules and regulations. The team conducted basic market research to identify the problem. The problem discovered was the lack of communication between student-athletes and businesses. In order to verify this problem, the team conducted several interviews with Arizona State University Athletic Department personnel. From the interviews, the team identified that the user is the student-athletes and the buyer is the brands and businesses. Once the problem was verified and the user and buyer were identified, a solution that would best fit the customers was formulated. The solution is a platform that assists student-athletes navigate the changing rules of the NCAA by providing access to a marketplace optimized to working with student-athletes and offering an ease of maintaining relationships between student-athletes and businesses. The solution was validated through meetings with interested brands. The team used the business model and market potential to pitch the business idea to the brands. Finally, the team gained traction by initiating company partnerships.

ContributorsRecato, Bella Sebastian (Co-author) / Schulte, Brooke (Co-author) / Winston, Blake (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeffrey (Committee member) / Engineering Programs (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that

The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that resembles playing tunes. Originally the idea was to split the audio into left and right, then to further segregate the signals to have a treble, mid, and base emitter for each side. Due to time, budget, and scope constraints, we decided to complete the project with only two coils.<br/><br/>For this project, the team decided to use a solid-state coil kit. This kit was purchased from OneTelsa and would help ensure everyone’s safety and the project’s success. The team developed our own interrupting or driving circuit through reverse-engineering the interrupter provided by oneTesla and discussing with other engineers. The custom interpreter was controlled by the PSoC5 LP and communicated with an audio source through the DFRobot Bluetooth module. Utilizing the left and right audio signals it can drive the two Tesla Coils in stereo to play the music.

ContributorsPinkowski, Olivia N (Co-author) / Hutcherson, Cree (Co-author) / Jordan, Shawn (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor, Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05