Matching Items (131)
133610-Thumbnail Image.png
Description
Interplanetary space travel has seen a surge of interest in not only media but also within the academic field as well. No longer are we designing and investigating extravehicular activity (EVA) suits, scholars and researchers are also engineering the future suit to protect humans on the surfaces of Martian planets.

Interplanetary space travel has seen a surge of interest in not only media but also within the academic field as well. No longer are we designing and investigating extravehicular activity (EVA) suits, scholars and researchers are also engineering the future suit to protect humans on the surfaces of Martian planets. As we are progressing with technology capable of taking us even further distances than before imaginable, this thesis aims to produce an exosuit that will find a place between the planets and stars, by providing countermeasures to muscle and bone atrophy. This is achieved through the rapidly growing field of soft robotics and the technology within it. An analytical model governing torque production of an array of soft pneumatic actuators was created to provide resistive forces on the human joints. Thus, we can recreate and simulate a majority of the loads that would be experienced on earth, in microgravity. Where push-ups on earth require on average 30Nm of torque about the elbow joint, by donning this exosuit, the same forces can be experienced when pushing off of surfaces while navigating within the space capsule. It is ergonomic, low-cost, and most importantly lightweight. While weight is negligible in micro-G, the payloads required for transporting current exercising equipment are costly and would take up valuable cargo space that would otherwise be allocated to research related items or sustenance. Factor in the scaling of current "special space agent" missions times 20-50, and the problem is further exacerbated. Therefore, the proposed design has warranted potential for the short term need of Mars missions, and additionally satisfy the long-term goal of taking humanity to infinite and beyond.
ContributorsLam, Quoc Phuong (Author) / Polygerinoa, Panagiotis (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133613-Thumbnail Image.png
Description
In this article we present a low-cost force-sensing quadrupedal laminate robot platform. The robot has two degrees of freedom on each of four independent legs, allowing for a variety of motion trajectories to be created at each leg, thus creating a rich control space to explore on a relatively low-cost

In this article we present a low-cost force-sensing quadrupedal laminate robot platform. The robot has two degrees of freedom on each of four independent legs, allowing for a variety of motion trajectories to be created at each leg, thus creating a rich control space to explore on a relatively low-cost robot. This platform allows a user to research complex motion and gait analysis control questions, and use different concepts in computer science and control theory methods to permit it to walk. The motion trajectory of each leg has been modeled in Python. Critical design considerations are: the complexity of the laminate design, the rigidity of the materials of which the laminate is constructed, the accuracy of the transmission to control each leg, and the design of the force sensing legs.
ContributorsShuch, Benjamin David (Author) / Aukes, Daniel (Thesis director) / Sodemann, Angela (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133867-Thumbnail Image.png
Description
This study used an online survey methodology looking at all levels of archers and coaches to understand their perceptions of the shooting process and Mental Game importance. The survey asked about the archer's skill level and their training style, as well as their perception of the importance of each ste

This study used an online survey methodology looking at all levels of archers and coaches to understand their perceptions of the shooting process and Mental Game importance. The survey asked about the archer's skill level and their training style, as well as their perception of the importance of each step in the shooting process and the different parts of the Mental Game. The study also processed the impact of performance of an archer based on their perception of importance of the different steps of the shooting process and the Mental Game. Depending on if the archer has ever had a coach, certain steps of the shooting process and certain parts of the Mental Game was impacted by having a coach at one time. While, the level of coach also impacts how the Mental Game is perceived. Throughout this study, imagery was the most impacted by the level of coach the participant is, if the participants have ever had a coach, and how the participants perform.
ContributorsBell, Rebecca Christa (Author) / Craig, Scotty (Thesis director) / Gray, Robert (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134378-Thumbnail Image.png
Description
Cooperative education has a long-standing tradition within engineering education. As part of the experiential education field, it carries many success stories. Several universities offer a robust cooperative education track. In recent years, Arizona State University has made the decision to formalize a cooperative education program. Arizona State University, like many

Cooperative education has a long-standing tradition within engineering education. As part of the experiential education field, it carries many success stories. Several universities offer a robust cooperative education track. In recent years, Arizona State University has made the decision to formalize a cooperative education program. Arizona State University, like many other institutions, has long since provided career support and promoted internships as an excellent work experience option before graduation. The decision to formalize a cooperative education program speaks to a need for a more rigorous path to work experience for engineering students. This paper is an investigation into the barriers and enablers behind a young cooperative education program. These results indicate that while students do benefit from the program, growth of the program may be tied to creating a meaningful distinction between cooperative education and other learning opportunities.
ContributorsGolka, Margaret (Author) / Jordan, Shawn (Thesis director) / Morrell, Darryl (Committee member) / W. P. Carey School of Business (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the

The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the development of a biomimetic nautilus using soft robotic methods. The study shows background research and discusses the methods used to develop a nautilus themed sub aquatic robot that uses a double bladder system and a pump to generate thrust for movement. The study shows how the unit would be fabricated and constructed. The study also explores why the second stage of the design failed and how it could potentially be fixed in future iterations.
ContributorsCarlson, Caleb Elijah (Author) / Polygerinos, Panagiotis (Thesis director) / Parsey, John (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134475-Thumbnail Image.png
Description
This research focused on how low-income communities in Ghana could convert Waste Vegetable Oil (WVO) into biodiesel to supplement their energy demands. The 2016 World Energy Outlook estimates that about 8 million Ghanaians do not have access to electricity while 82% of the population use biomass as cooking fuel. However,

This research focused on how low-income communities in Ghana could convert Waste Vegetable Oil (WVO) into biodiesel to supplement their energy demands. The 2016 World Energy Outlook estimates that about 8 million Ghanaians do not have access to electricity while 82% of the population use biomass as cooking fuel. However, WVO is available in almost every home and is also largely produced by hotels and schools. There are over 2,700 registered hotels and more than 28,000 educational institutions from Basic to the Tertiary level. Currently, most WVOs are often discarded in open gutters or left to go rancid and later disposed of. Therefore, WVOs serve as cheap materials available in large quantities with a high potential for conversion into biodiesel and commercializing to support the economic needs of low-income communities. In 2013, a group of researchers at Kwame Nkrumah University of Science and Technology (KNUST) in Ghana estimated that the country could be producing between 82,361 and 85,904 tons of biodiesel from WVOs generated by hotels alone in 2015. Further analysis was also carried out to examine the Ghana National Biofuel Policy that was introduced in 2005 with support from the Ghana Energy Commission. Based on the information identified in the research, a set of recommendations were made to help the central government in promoting the biodiesel industry in Ghana, with a focus on low-income or farming communities. Lastly, a self-sustaining biodiesel production model with high potential for commercialization, was proposed to enable low-income communities to produce their own biodiesel from WVOs to meet their energy demands.
ContributorsAnnor-Wiafe, Stephen (Author) / Henderson, Mark (Thesis director) / Rogers, Bradley (Committee member) / Engineering Programs (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134694-Thumbnail Image.png
Description
The SAE Baja series is a competition that challenges university student teams on all aspects of designing, building, and testing an all-terrain vehicle. In the competition, the teams present their engineering analysis of all components of their vehicle to a panel of professional engineers to show why the team's design

The SAE Baja series is a competition that challenges university student teams on all aspects of designing, building, and testing an all-terrain vehicle. In the competition, the teams present their engineering analysis of all components of their vehicle to a panel of professional engineers to show why the team's design is the overall best in performance and in manufacturing cost. Currently Arizona State University's SAE Baja team does not have a method to analyze their vehicle's suspension system, especially on the car's shock absorbers. The current solution to this problem is to change the shock absorber parameters, test drive the car, and repeat the shock absorber tuning until the car is able to produce the performance that the team desires. The following paper introduces and demonstrates three different methods, ADAMS Car, SOLIDWORKS, and MATLAB, that can be used to analyze the suspension system and gather data that can be used in the competition presentation. ADAMS Car is a power software that is used in the automotive and other engineering fields. The program does have a steep learning curve, but once the team is comfortable using it, ADAMS is very helpful with subsystem analysis and full body analysis. SOLIDWORKS can be used to perform motion analysis and drop tests, which can then be exported into ADAMS for further analysis. MATLAB can be used to model the Baja vehicle as a quarter model, which makes it easier for the team to model. Using the methods presented in this paper, ASU's Baja team can test coil-over and air shock absorbers to determine which type is more suitable for the performance and overall cost of the whole vehicle.
ContributorsPerez, Marcos (Author) / Contes, James (Thesis director) / Redkar, Sangram (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133547-Thumbnail Image.png
Description
After visiting Nepal and seeing the problem of potable drinking water, there needed to be a solution to purify it. Simultaneously, local national forests have been overrun with two invasive plant species: Mikania micrantha and Lantana camara. Both a very fast-growing species and can be turned into biochar. If the

After visiting Nepal and seeing the problem of potable drinking water, there needed to be a solution to purify it. Simultaneously, local national forests have been overrun with two invasive plant species: Mikania micrantha and Lantana camara. Both a very fast-growing species and can be turned into biochar. If the resulting is made through an effective process, then the community would be able to work less making each batch of biochar and make more money per batch, whereby the market already exists. The community could grow their profits even further by activating the created charcoal, which fetches an even better price. Most Importantly, among other important uses, the activated charcoal could also be used in clean drinking water systems. The prospect of using activated charcoal as water purifying agents can be tested in a future design of experiments. This design of experiments would assess the effectiveness of the activated charcoal, to determine which pore size is the most cost effective at filtering out pollutants. This thesis focuses on researching different types of biochar kilns, clean drinking water systems, and the use of charcoal in clean drinking water systems.
ContributorsBarron, Timothy (Author) / Chhetri, Netra (Thesis director) / Henderson, Mark (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133555-Thumbnail Image.png
Description
Bifacial photovoltaic modules are a relatively new development in the photovoltaic industry which allows for the collection and conversion of light on both sides of photovoltaic modules to usable electricity. Additional energy yield from bifacial photovoltaic modules, despite a slight increase in cost due to manufacturing processes of the bifacial

Bifacial photovoltaic modules are a relatively new development in the photovoltaic industry which allows for the collection and conversion of light on both sides of photovoltaic modules to usable electricity. Additional energy yield from bifacial photovoltaic modules, despite a slight increase in cost due to manufacturing processes of the bifacial cells, has the potential to significantly decrease the LCOE of photovoltaic installation. The performance of bifacial modules is dependent on three major factors: incident irradiation on the front side of the module, reflected irradiation on the back side of the module, and the module's bifaciality. Bifaciality is an inherent property of the photovoltaic cells and is determined by the performance of the front and rear side of the module when tested at STC. The reflected light on the back side of the module, however, is determined by several different factors including the incident ground irradiance, shading from the modules and racking system, height of the module installation, and ground albedo. Typical ground surfaces have a low albedo, which means that the magnitude of reflected light is a low percentage of the incident irradiance. Non-uniformity of back-side irradiance can also reduce the power generation due to cell-to-cell mismatch losses. This study investigates the use of controlled back-side reflectors to improve the irradiance on the back side of loosely packed 48-cell bifacial modules and compares this performance to the performance of 48 and 60-cell bifacial modules which rely on the uncontrolled reflection off nearby ground surfaces. Different construction geometries and reflective coating materials were tested to determine optimal construction to improve the reflectivity and uniformity of reflection. Results of this study show a significant improvement of 10-14% total energy production from modules with reflectors when compared to the 48-cell module with an uncontrolled ground reflection.
ContributorsBowersox, David Andrew (Author) / Tamizhmani, Govindasamy (Thesis director) / Srinivasan, Devarajan (Committee member) / School for Engineering of Matter, Transport and Energy (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132904-Thumbnail Image.png
Description
This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.
ContributorsLerner, Jonah Benjamin (Author) / Carberry, Adam (Thesis director) / Walters, Molina (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05