Matching Items (5)
Filtering by

Clear all filters

127884-Thumbnail Image.png
Description

A typical building construction process runs through three main consecutive phases: design, construction and operation. Currently, architects and engineers both engage in the creation of environmental designs that adequately reflect high performance through sustainability and energy efficiency in new buildings. Occupants of buildings have also recently demonstrated a dramatic increase

A typical building construction process runs through three main consecutive phases: design, construction and operation. Currently, architects and engineers both engage in the creation of environmental designs that adequately reflect high performance through sustainability and energy efficiency in new buildings. Occupants of buildings have also recently demonstrated a dramatic increase in awareness regarding building operation, energy usage, and indoor air quality. The process of building construction is chronologically located between both the design and the operation phases. However, this phase has not yet been addressed in either understanding contractor behavior or developing innovative sustainable techniques. These two vital aspects have the potential to levy a dramatic impact on enhancing building performance and operational costs.

Repeatedly causing apprehension to the construction industry is a question that posits, “Why is there a gap/delta/inconsistency between the designed EUI, Energy Use Intensity, and the operational EUI”? Building occupants shall not be the only party that bears blame for the delta in energy. It is true, nonetheless, that occupants are part of the reason, but the contractor – as well as the entire construction phase - also remain prime suspects worth investigating. In the present time, research is predominantly focused on occupants (post-occupancy) and designers to educate and control the gap between designed and operational EUI. This research has succeeded in the identification of the construction phase, in conjunction with contractor behavior, as another main factor for initiating this energy gap. Therefore, not only is the coupling of sustainable strategies to the construction drivers crucial to attaining a sustainable project, but also it is integral to analyzing contractor behavior within each of the construction phases that play a vital role in successfully serving sustainability. Various techniques and approaches will assist contractors in amending their method statements to ensure a sustainable project.

This research correlates an existing project to the two proposed sustainable concepts: 1) Identify cost-saving strategies that may have been implemented or avoided during the construction process, and 2) Evaluate the impacts of implementing these strategies on overall performance. The adopted contexts are to partially foster sustainable architecture concepts to the Contractor process, and then proceed to analyze its cost implication on overall project performance. Results of the validation of this approach verify that when contractors embrace a sustainable construction process the overall project will yield various financial savings. A mixed-use project was utilized to validate these concepts, which indicated three outcomes: firstly, a 25% decrease in manpower for tiling while maintaining the same productivity, thus reflecting a saving of $3,500; next, increasing the productivity of concrete activity, which would shorten the duration of the construction by 45 days and reflect a saving of $1.5 million, and last of all, reducing the overhead costs of labor camps by efficiently orienting temporary shelters, which reveals a reduction in cooling and heating that returned a saving of approximately $10,000. This research develops a comprehensive evidence-based study that addresses the above-mentioned gap in the construction phase, which targets to yield a multi-dimensional tool that will allow: 1) integrating critical thinking and decision-making approaches regarding contractor behavior, and 2) adopting innovative sustainable construction methods that reflect reduction in operating costs.

ContributorsElzomor, Mohamed (Author) / Parrish, Kristen (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127878-Thumbnail Image.png
Description

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach and a web-based retrofit toolkit tested on a case study in Arizona, this methodology was able to save about 50% of the total energy consumed by the case study building, depending on the adopted measures and invested capital. While the case study presented is a deep energy retrofit, the proposed framework is effective in guiding the decision-making process that precedes any energy retrofit, deep or light.

ContributorsRios, Fernanda (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127828-Thumbnail Image.png
Description

Small commercial buildings, or those comprising less than 50,000 square feet of floor area, make up 90% of the total number of buildings in the United States. Though these buildings currently account for less than 50% of total energy consumption in the U.S., this statistic is expected to change as

Small commercial buildings, or those comprising less than 50,000 square feet of floor area, make up 90% of the total number of buildings in the United States. Though these buildings currently account for less than 50% of total energy consumption in the U.S., this statistic is expected to change as larger commercial buildings become more efficient and thus account for a smaller percentage of commercial building energy consumption. This paper describes the efforts of a multi-organization collaboration and their demonstration partners in developing a library of case studies that promote and facilitate energy efficiency in the small commercial buildings market as well as a case study template that standardized the library. Case studies address five identified barriers to energy efficiency in the small commercial market, specifically lack of: 1) access to centralized, comprehensive, and consistent information about how to achieve energy targets, 2) reasonably achievable energy targets, 3) access to tools that measure buildings’ progress toward targets, 4) financial incentives that make the reduction effort attractive, and 5) effective models of how disparate stakeholders can collaborate in commercial centers to reach targets. The case study library can be organized by location, ownership type, decision criteria, building type, project size, energy savings, end uses impacted, and retrofit measures. This paper discusses the process of developing the library and case study template. Finally, the paper presents next steps in demonstrating the efficacy of the library and explores energy savings potential from broad implementation.

ContributorsBarnes, Elizabeth (Author) / Parrish, Kristen (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
127933-Thumbnail Image.png
Description

To date, little research has been performed regarding the planning and management of “small” projects – those projects typically differentiated from “large” projects due to having lower costs. In 2013, The Construction Industry Institute (CII) set out to develop a front end planning tool that will provide practitioners with a

To date, little research has been performed regarding the planning and management of “small” projects – those projects typically differentiated from “large” projects due to having lower costs. In 2013, The Construction Industry Institute (CII) set out to develop a front end planning tool that will provide practitioners with a standardized process for planning small projects in the industrial sector. The research team determined that data should be sought from industry regarding small industrial projects to ensure applicability, effectiveness and validity of the new tool. The team developed and administered a survey to determine (1) the prevalence of small projects, (2) the planning processes currently in use for small projects, and (3) current metrics used by industry to differentiate between small and large projects. The survey data showed that small projects make up a majority of projects completed in the industrial sector, planning of these projects varies greatly across the industry, and the metrics posed in the survey were mostly not appropriate for use in differentiating between small and large projects. This study contributes to knowledge through adding to the limited research surrounding small projects, and suggesting future research regarding using measures of project complexity to differentiate between small and large projects.

ContributorsCollins, Wesley (Author) / Parrish, Kristen (Author) / Gibson, G (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017-08-24
127929-Thumbnail Image.png
Description

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy demand of individual buildings through their physical properties and energy use for specific end uses (e.g., lighting, appliances, and water heating). Researchers then scale up these model results to represent the building stock of the region studied.

Studies reveal that there is a lack of information about the building stock and associated modeling tools and this lack of knowledge affects the assessment of building energy efficiency strategies. Literature suggests that the level of complexity of energy models needs to be limited. Accuracy of these energy models can be elevated by reducing the input parameters, alleviating the need for users to make many assumptions about building construction and occupancy, among other factors. To mitigate the need for assumptions and the resulting model inaccuracies, the authors argue buildings should be described in a regional stock model with a restricted number of input parameters. One commonly-accepted method of identifying critical input parameters is sensitivity analysis, which requires a large number of runs that are both time consuming and may require high processing capacity.

This paper utilizes the Energy, Carbon and Cost Assessment for Buildings Stocks (ECCABS) model, which calculates the net energy demand of buildings and presents aggregated and individual- building-level, demand for specific end uses, e.g., heating, cooling, lighting, hot water and appliances. The model has already been validated using the Swedish, Spanish, and UK building stock data. This paper discusses potential improvements to this model by assessing the feasibility of using stepwise regression to identify the most important input parameters using the data from UK residential sector. The paper presents results of stepwise regression and compares these to sensitivity analysis; finally, the paper documents the advantages and challenges associated with each method.

ContributorsArababadi, Reza (Author) / Naganathan, Hariharan (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14