Matching Items (582)
Filtering by

Clear all filters

136978-Thumbnail Image.png
Description
The goal of the studies described in this thesis was to determine the changes in vascular density in the paraventricular nucleus (PVN) of the hypothalamus following prenatal exposure to the synthetic glucocorticoid hormone, dexamethasone (DEX). DEX is a synthetic glucocorticoid used clinically in women at risk for preterm delivery or

The goal of the studies described in this thesis was to determine the changes in vascular density in the paraventricular nucleus (PVN) of the hypothalamus following prenatal exposure to the synthetic glucocorticoid hormone, dexamethasone (DEX). DEX is a synthetic glucocorticoid used clinically in women at risk for preterm delivery or in preterm infants to promote proper pulmonary development in high-risk neonates. Prenatal exposure to glucocorticoids such as DEX may change the development of important brain regulatory centers such as the PVN, resulting in increased risk for diseases in adulthood.
Previous studies have demonstrated that the hypothalamus regulates neuroendocrine and autonomic function and behavior. Within the hypothalamus, the paraventricular nucleus (PVN) is an integratory node that contains neurons associated with the control of neuroendocrine and autonomic responses. The PVN also has one of the highest density of blood vessels within the brain. Alterations of normal PVN angiogenesis by dexamethasone could potentially result in long-term modifications of brain and endocrine functions.
Timed-pregnant Sprague Dawley female rats received DEX on gestational days 18-21 and the resulting progeny were sacrificed at Postnatal Day (PND) 0, 4, 14, and 21. A tomato lectin, Lycopersicon Esculentum labeled with DyLight594 was used to stain blood vessels in the PVN and scanning confocal microscopy was used to analyze the experimental brains for PVN blood vessel density
Analysis of data using a 3-way analysis of variance (ANOVA) with age, sex and treatment as main factors, showed a significant age effect in vascular density. Analysis of female data by 2-way ANOVA demonstrated a significant effect of age, but no treatment or interaction effects. Post-hoc analysis shows significant differences at PND 2, 4, 14, and 21 compared to PND0. A Student‘s t-test of a planned comparison on PND2 showed a significant reduction by DEX treatment (p < 0.05). Analysis of data from females, using 2-way ANOVA demonstrated a significant effect of age, but no treatment or interaction effects. Post-hoc analysis shows significant differences at PND 2, 4, 14, and 21 compared to PND0. A planned comparison at PND 2 using Student’s t-test indicated a significant reduction by dex treatment.
The results of these studies demonstrate that there is significant postnatal angiogenic programming and that the vascular density of the PVN is altered by prenatal dexamethasone administration at PND2. The time-course shows developmental fluctuations in vessel density that may prove to be physiologically significant for normal brain function and developmental programming of brain and behavior.
ContributorsWidener, Andrew John-Claude (Author) / Handa, Robert (Thesis director) / Orchinik, Miles (Committee member) / Mustard, Julie (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
149390-Thumbnail Image.png
Description
The gender gap of women in science is an important and unresolved issue in higher education and occupational opportunities. The present study was motivated by the fact that there are typically fewer females than males advancing in science, and therefore fewer female science instructor role models. This observation inspired the

The gender gap of women in science is an important and unresolved issue in higher education and occupational opportunities. The present study was motivated by the fact that there are typically fewer females than males advancing in science, and therefore fewer female science instructor role models. This observation inspired the questions: Are female college students influenced in a positive way by female science teaching assistants (TAs), and if so how can their influence be measured? The study tested the hypothesis that female TAs act as role models for female students and thereby encourage interest and increase overall performance. To test this "role model" hypothesis, the reasoning ability and self-efficacy of a sample of 724 introductory college biology students were assessed at the beginning and end of the Spring 2010 semester. Achievement was measured by exams and course work. Performance of four randomly formed groups was compared: 1) female students with female TAs, 2) male students with female TAs, 3) female students with male TAs, and 4) male students with male TAs. Based on the role model hypothesis, female students with female TAs were predicted to perform better than female students with male TAs. However, group comparisons revealed similar performances across all four groups in achievement, reasoning ability and self-efficacy. The slight differences found between the four groups in student exam and coursework scores were not statistically significant. Therefore, the results did not support the role model hypothesis. Given that both lecture professors in the present study were males, and given that professors typically have more teaching experience, finer skills and knowledge of subject matter than do TAs, a future study that includes both female science professors and female TAs, may be more likely to find support for the hypothesis.
ContributorsEbert, Darilyn (Author) / Lawson, Anton (Thesis advisor) / Maienschein, Jane (Committee member) / Mustard, Julie (Committee member) / Arizona State University (Publisher)
Created2010
130355-Thumbnail Image.png
Description
Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of

Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology.
Results
Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed.
Conclusions
Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
ContributorsGraham, Allie M. (Author) / Munday, Michael D. (Author) / Kaftanoglu, Osman (Author) / Page, Robert (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2011-04-13