Matching Items (94)
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
137186-Thumbnail Image.png
Description
MESFETs are used in high frequency applications and are typically made from GaAs. Dr. Trevor Thornton designed a silicon-on-insulator MESFET \u2014 a cheaper alternative with competitive capabilities. This paper concerns the characterization and modeling of this device to exhibit its marketability as a CMOS integrated transistor. Overviews of the MESFET's

MESFETs are used in high frequency applications and are typically made from GaAs. Dr. Trevor Thornton designed a silicon-on-insulator MESFET \u2014 a cheaper alternative with competitive capabilities. This paper concerns the characterization and modeling of this device to exhibit its marketability as a CMOS integrated transistor. Overviews of the MESFET's history and DLTS (deep level transient spectroscopy) are offered.
ContributorsTerrell, Catherine Elaine (Author) / Thornton, Trevor (Thesis director) / Young, Alexander (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
137561-Thumbnail Image.png
Description
Many studies have shown that as the calcium carbonate precipitates, it sequesters phosphate. Although the geochemical interactions between phosphate and calcium carbonate are known, only a few studies have considered calcium carbonate deposition's effect on stream ecology. Further, those studies considering decomposition have produced conflicting results. In this study, nutrient-diffusing

Many studies have shown that as the calcium carbonate precipitates, it sequesters phosphate. Although the geochemical interactions between phosphate and calcium carbonate are known, only a few studies have considered calcium carbonate deposition's effect on stream ecology. Further, those studies considering decomposition have produced conflicting results. In this study, nutrient-diffusing cups with organic substrata were used to determine the nutrient limitation of decomposers in the travertine streams in the Huachuca Mountains. After processing a subset of the experiments, only one site (in Huachuca Canyon) from the four study streams was significantly nutrient-limited (NP co-limitation).
ContributorsNevarez, Nicole Michelle (Author) / Elser, James (Thesis director) / Sabo, John (Committee member) / Corman, Jessica (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136385-Thumbnail Image.png
Description
The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an

The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an extremely cost effective way. Higher integration leads to electronics with increased functionality and a smaller finished product. The MESFETs are designed in-house by the research group led by Dr. Trevor Thornton. The layouts are then sent to multi-project wafer (MPW) integrated circuit foundry companies, such as the Metal Oxide Semiconductor Implementation Service (MOSIS) to be fabricated. Once returned, the electrical characteristics of the devices are measured. The MESFET has been implemented in various applications by the research group, including the low dropout linear regulator (LDO) and RF power amplifier. An advantage of the MESFET is that it can function in extreme environments such as space, allowing for complex electrical systems to continue functioning properly where traditional transistors would fail.
ContributorsKam, Jason (Author) / Thornton, Trevor (Thesis director) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
Description
“The Long Alchemy of Becoming: Aqua es Vida” is a short, artistic film depicting the history of the Universe shown through the microcosm of the Mexican town, Cuatro Ciénegas, in the state of Coahuila. The film takes the viewer from the start of the universe to what scientists believe will

“The Long Alchemy of Becoming: Aqua es Vida” is a short, artistic film depicting the history of the Universe shown through the microcosm of the Mexican town, Cuatro Ciénegas, in the state of Coahuila. The film takes the viewer from the start of the universe to what scientists believe will be its end, via a poem written by Dr. James Elser. “The Long Alchemy of Becoming: Aqua es Vida” starts with the Big Bang, through the formation of matter, stars, planets, including Earth. From there, the viewer witnesses how life evolved illustrated via scenes in the ciénegas (‘marsh’ in Spanish) found in Cuatro Ciénegas, Coahuila, Mexico. The film explores how life expanded out from water, producing plants and animals, including humans. Then, modern life in Cuatro Ciénegas is shown, including the modern agricultural practices that are threatening to destroy the ciénegas that sustain long histories of microbial evolution. The film concludes with the end mankind and the eventual destruction of Earth by the dying sun. Cuatro Ciénegas is a biologically and ecologically significant location, because its pools and marshes are home to many endemic species, including stromatolites, which are very rare, bio-chemical living structures. This film is part of a National Science Foundation grant, and reflects the extensive scientific research efforts in and around Cuatro Ciénegas and its unique pools.
ContributorsDavis, Samantha Kristen (Author) / Elser, James (Thesis director) / Lloyd, Samantha (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2015-05
149615-Thumbnail Image.png
Description
This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas

This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas sensor system is required. This thesis describes the research, development, implementation and test of a small and portable based prototype platform for chemical gas sensors to enable a low-power and low noise gas detection system. The AFE reads out the outputs of eight conductometric sensor array and eight amperometric sensor arrays. The IC consists of a low noise potentiostat, and associated 9bit current-steering DAC for sensor stimulus, followed by the first order nested chopped £U£G ADC. The conductometric sensor uses a current driven approach for extracting conductance of the sensor depending on gas concentration. The amperometric sensor uses a potentiostat to apply constant voltage to the sensors and an I/V converter to measure current out of the sensor. The core area for the AFE is 2.65x0.95 mm2. The proposed system achieves 91 dB SNR at 1.32 mW quiescent power consumption per channel. With digital offset storage and nested chopping, the readout chain achieves 500 fÝV input referred offset.
ContributorsKim, Hyun-Tae (Author) / Bakkaloglu, Bertan (Thesis advisor) / Vermeire, Bert (Committee member) / Spanias, Andreas (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2011
149362-Thumbnail Image.png
Description
Graphene, a one atomic thick planar sheet of carbon atoms, has a zero gap band structure with a linear dispersion relation. This unique property makes graphene a favorite for physicists and engineers, who are trying to understand the mechanism of charge transport in graphene and using it as channel material

Graphene, a one atomic thick planar sheet of carbon atoms, has a zero gap band structure with a linear dispersion relation. This unique property makes graphene a favorite for physicists and engineers, who are trying to understand the mechanism of charge transport in graphene and using it as channel material for field effect transistor (FET) beyond silicon. Therefore, an in-depth exploring of these electrical properties of graphene is urgent, which is the purpose of this dissertation. In this dissertation, the charge transport and quantum capacitance of graphene were studied. Firstly, the transport properties of back-gated graphene transistor covering by high dielectric medium were systematically studied. The gate efficiency increased by up to two orders of magnitude in the presence of a high top dielectric medium, but the mobility did not change significantly. The results strongly suggested that the previously reported top dielectric medium-induced charge transport properties of graphene FETs were possibly due to the increase of gate capacitance, rather than enhancement of carrier mobility. Secondly, a direct measurement of quantum capacitance of graphene was performed. The quantum capacitance displayed a non-zero minimum at the Dirac point and a linear increase on both sides of the minimum with relatively small slopes. The findings - which were not predicted by theory for ideal graphene - suggested that scattering from charged impurities also influences the quantum capacitance. The capacitances in aqueous solutions at different ionic concentrations were also measured, which strongly suggested that the longstanding puzzle about the interfacial capacitance in carbon-based electrodes had a quantum origin. Finally, the transport and quantum capacitance of epitaxial graphene were studied simultaneously, the quantum capacitance of epitaxial graphene was extracted, which was similar to that of exfoliated graphene near the Dirac Point, but exhibited a large sub-linear behavior at high carrier density. The self-consistent theory was found to provide a reasonable description of the transport data of the epitaxial graphene device, but a more complete theory was needed to explain both the transport and quantum capacitance data.
ContributorsXia, Jilin (Author) / Tao, N.J. (Thesis advisor) / Ferry, David (Committee member) / Thornton, Trevor (Committee member) / Tsui, Raymond (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2010
149494-Thumbnail Image.png
Description
The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the

The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the process flow or adding additional steps, which in turn, leads to an increase in fabrication costs. Si-MESFETs (silicon-metal-semiconductor-field-effect-transistors) from Arizona State University (ASU) on the other hand, have an inherent high voltage capability and can be added to any silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) CMOS process free of cost. This has been proved at five different commercial foundries on technologies ranging from 0.5 to 0.15 μm. Another critical issue facing CMOS processes on insulated substrates is the scaling of the thin silicon channel. Consequently, the future direction of SOI/SOS CMOS transistors may trend away from partially depleted (PD) transistors and towards fully depleted (FD) devices. FD-CMOS are already being implemented in multiple applications due to their very low power capability. Since the FD-CMOS market only figures to grow, it is appropriate that MESFETs also be developed for these processes. The beginning of this thesis will focus on the device aspects of both PD and FD-MESFETs including their layout structure, DC and RF characteristics, and breakdown voltage. The second half will then shift the focus towards implementing both types of MESFETs in an analog circuit application. Aside from their high breakdown ability, MESFETs also feature depletion mode operation, easy to adjust but well controlled threshold voltages, and fT's up to 45 GHz. Those unique characteristics can allow certain designs that were previously difficult to implement or prohibitively expensive using conventional technologies to now be achieved. One such application which benefits is low dropout regulators (LDO). By utilizing an n-channel MESFET as the pass transistor, a LDO featuring very low dropout voltage, fast transient response, and stable operation can be achieved without an external capacitance. With the focus of this thesis being MESFET based LDOs, the device discussion will be mostly tailored towards optimally designing MESFETs for this particular application.
ContributorsLepkowski, William (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2010
148467-Thumbnail Image.png
Description

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first half of the paper provides the motivation, design and progress of the project, <br/>while the latter half provides a literature survey on current automobile trends, the viability of the<br/>See-Through Car Pillar as a product in the market through case studies, and alternative designs and <br/>technologies that also might address the problem statement.

ContributorsRoy, Delwyn J (Author) / Thornton, Trevor (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130365-Thumbnail Image.png
Description
Background
“Stoichioproteomics” relates the elemental composition of proteins and proteomes to variation in the physiological and ecological environment. To help harness and explore the wealth of hypotheses made possible under this framework, we introduce GRASP (http://www.graspdb.net), a public bioinformatic knowledgebase containing information on the frequencies of 20 amino acids and atomic

Background
“Stoichioproteomics” relates the elemental composition of proteins and proteomes to variation in the physiological and ecological environment. To help harness and explore the wealth of hypotheses made possible under this framework, we introduce GRASP (http://www.graspdb.net), a public bioinformatic knowledgebase containing information on the frequencies of 20 amino acids and atomic composition of their side chains. GRASP integrates comparative protein composition data with annotation data from multiple public databases. Currently, GRASP includes information on proteins of 12 sequenced Drosophila (fruit fly) proteomes, which will be expanded to include increasingly diverse organisms over time. In this paper we illustrate the potential of GRASP for testing stoichioproteomic hypotheses by conducting an exploratory investigation into the composition of 12 Drosophila proteomes, testing the prediction that protein atomic content is associated with species ecology and with protein expression levels.
Results
Elements varied predictably along multivariate axes. Species were broadly similar, with the D. willistoni proteome a clear outlier. As expected, individual protein atomic content within proteomes was influenced by protein function and amino acid biochemistry. Evolution in elemental composition across the phylogeny followed less predictable patterns, but was associated with broad ecological variation in diet. Using expression data available for D. melanogaster, we found evidence consistent with selection for efficient usage of elements within the proteome: as expected, nitrogen content was reduced in highly expressed proteins in most tissues, most strongly in the gut, where nutrients are assimilated, and least strongly in the germline.
Conclusions
The patterns identified here using GRASP provide a foundation on which to base future research into the evolution of atomic composition in Drosophila and other taxa.
ContributorsGilbert, James D. J. (Author) / Acquisti, Claudia (Author) / Martinson, Holly M. (Author) / Elser, James (Author) / Kumar, Sudhir (Author) / Fagan, William F. (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-09-04