Matching Items (3)
Filtering by

Clear all filters

Description
“The Long Alchemy of Becoming: Aqua es Vida” is a short, artistic film depicting the history of the Universe shown through the microcosm of the Mexican town, Cuatro Ciénegas, in the state of Coahuila. The film takes the viewer from the start of the universe to what scientists believe will

“The Long Alchemy of Becoming: Aqua es Vida” is a short, artistic film depicting the history of the Universe shown through the microcosm of the Mexican town, Cuatro Ciénegas, in the state of Coahuila. The film takes the viewer from the start of the universe to what scientists believe will be its end, via a poem written by Dr. James Elser. “The Long Alchemy of Becoming: Aqua es Vida” starts with the Big Bang, through the formation of matter, stars, planets, including Earth. From there, the viewer witnesses how life evolved illustrated via scenes in the ciénegas (‘marsh’ in Spanish) found in Cuatro Ciénegas, Coahuila, Mexico. The film explores how life expanded out from water, producing plants and animals, including humans. Then, modern life in Cuatro Ciénegas is shown, including the modern agricultural practices that are threatening to destroy the ciénegas that sustain long histories of microbial evolution. The film concludes with the end mankind and the eventual destruction of Earth by the dying sun. Cuatro Ciénegas is a biologically and ecologically significant location, because its pools and marshes are home to many endemic species, including stromatolites, which are very rare, bio-chemical living structures. This film is part of a National Science Foundation grant, and reflects the extensive scientific research efforts in and around Cuatro Ciénegas and its unique pools.
ContributorsDavis, Samantha Kristen (Author) / Elser, James (Thesis director) / Lloyd, Samantha (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2015-05
137561-Thumbnail Image.png
Description
Many studies have shown that as the calcium carbonate precipitates, it sequesters phosphate. Although the geochemical interactions between phosphate and calcium carbonate are known, only a few studies have considered calcium carbonate deposition's effect on stream ecology. Further, those studies considering decomposition have produced conflicting results. In this study, nutrient-diffusing

Many studies have shown that as the calcium carbonate precipitates, it sequesters phosphate. Although the geochemical interactions between phosphate and calcium carbonate are known, only a few studies have considered calcium carbonate deposition's effect on stream ecology. Further, those studies considering decomposition have produced conflicting results. In this study, nutrient-diffusing cups with organic substrata were used to determine the nutrient limitation of decomposers in the travertine streams in the Huachuca Mountains. After processing a subset of the experiments, only one site (in Huachuca Canyon) from the four study streams was significantly nutrient-limited (NP co-limitation).
ContributorsNevarez, Nicole Michelle (Author) / Elser, James (Thesis director) / Sabo, John (Committee member) / Corman, Jessica (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05