Matching Items (213)
136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136341-Thumbnail Image.png
Description
Recently, electric and magnetic field sensing has come of interest to the military for a variety of applications, including imaging circuitry and detecting explosive devices. This thesis describes research at the ASU's Flexible Electronics and Display Center (FEDC) towards the development of a flexible electric and magnetic field imaging blanket.

Recently, electric and magnetic field sensing has come of interest to the military for a variety of applications, including imaging circuitry and detecting explosive devices. This thesis describes research at the ASU's Flexible Electronics and Display Center (FEDC) towards the development of a flexible electric and magnetic field imaging blanket. D-dot sensors, which detect changes in electric flux, were chosen for electric field sensing, and a single D-dot sensor in combination with a lock-in amplifier was used to detect individuals passing through an oscillating electric field. This was then developed into a 1 x 16 array of D-dot sensors used to image the field generated by two parallel wires. After the fabrication of a two-dimensional array, it was discovered that commercial field effect transistors did not have a high enough off-resistance to isolate the sensor form the column line. Three alternative solutions were proposed. The first was a one-dimensional array combined with a mechanical stepper to move the array across the E-field pattern. The second was a 1 x 16 strip detector combined with the techniques of computed tomography to reconstruct the image of the field. Such techniques include filtered back projection and algebraic iterative reconstruction (AIR). Lastly, an array of D-dot sensors was fabricated on a flexible substrate, enabled by the high off-resistance of the thin film transistors produced by the FEDC. The research on magnetic field imaging began with a feasibility study of three different types of magnetic field sensors: planar spiral inductors, Hall effect sensors, and giant magnetoresistance (GMR). An experimental array of these sensors was designed and fabricated, and the sensors were used to image the fringe fields of a Helmholtz coil. Furthermore, combining the inductors with the other two types of sensors resulted in three-dimensional sensors. From these measurements, it was determined that planar spiral inductors and Hall effect sensors are best suited for future imaging arrays.
ContributorsLarsen, Brett William (Author) / Allee, David (Thesis director) / Papandreou-Suppappola, Antonia (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136450-Thumbnail Image.png
Description
"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie

"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie narrate their stories through dialogue. The authors use this narrative model to archive their college experience at ASU. Representing creative nonfiction through comics yields an amalgamated format that can be challenging for both the writers to produce as well as for the readers to consume. Ultimately, the project serves as an attempt to test whether or not the comic medium can stand by itself as an appropriate format to express creative nonfictional narratives without becoming a diluted combination of its purer predecessors.
Created2015-05
136475-Thumbnail Image.png
Description
Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested

Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested through a sensitivity analysis. Doing so also provides insight about how to construct more effective feature vectors.
ContributorsMa, Owen (Author) / Bliss, Daniel (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
Description
This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial

This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial neural networks and neural activity in the brain. This project consists of three short pieces, each exploring these concept in different ways.
ContributorsKarpur, Ajay (Author) / Suzuki, Kotoka (Thesis director) / Ingalls, Todd (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Preschoolers' vocabularies are an important component of their receptive and expressive language skills. This study was designed to catalog preschoolers' expressive vocabularies to provide an accurate estimate of how many words and which words seven preschoolers knew. In this study a LENA digital recorder was used to record language samples

Preschoolers' vocabularies are an important component of their receptive and expressive language skills. This study was designed to catalog preschoolers' expressive vocabularies to provide an accurate estimate of how many words and which words seven preschoolers knew. In this study a LENA digital recorder was used to record language samples of the children (age range 40 months to 69 months) over 4-6 days. Their language samples were transcribed and individual root words were extracted. The children spoke an average of 1,698 unique words (range 1,522 \u2014 1,957 words). There were 539 words produced by all of the children in the study as well as 820 words produced by 6 of the 7 children. These data provide preliminary information that will be useful for designing a larger, more comprehensive study of children's vocabulary with the goal of teachers and speech-language pathologists being able to use this information to determine if a child's vocabulary is smaller than other children when they enter elementary school. This can inform assessment and intervention decisions as well as provide guidance to preschool curriculum developers.
ContributorsStanovich, Laura Ashlee (Author) / Gray, Shelley (Thesis director) / Restrepo, M. Adelaida (Committee member) / Department of Speech and Hearing Science (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135872-Thumbnail Image.png
Description
The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is

The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is more personalized than existing devices and tailored to the individual based on his level of experience. The analyzer consists of an accelerometer, gyroscope, magnetometer, vibration motor, and microcontroller that are connected on a board that attaches to the top of the shaft of a golf club, fitting inside a 3D printed case. The team has assembled all of the necessary hardware, and is able to successfully display critical parameters of a golf putt, as well as send instant feedback to the user. The final budget for this project was $378.24
ContributorsKaur, Hansneet (Co-author) / Cox, Jeremy (Co-author) / Farnsworth, Chad (Co-author) / Zorob, Nabil (Co-author) / Chae, Junseok (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135896-Thumbnail Image.png
Description
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only

The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
ContributorsMartin, Heather Catrina (Author) / Bowden, Stuart (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
Every engineer is responsible for completing a capstone project as a culmination of accredited university learning to demonstrate technical knowledge and enhance interpersonal skills, like teamwork, communication, time management, and problem solving. This project, with three or four engineers working together in a group, emphasizes not only the importance of

Every engineer is responsible for completing a capstone project as a culmination of accredited university learning to demonstrate technical knowledge and enhance interpersonal skills, like teamwork, communication, time management, and problem solving. This project, with three or four engineers working together in a group, emphasizes not only the importance of technical skills acquired through laboratory procedures and coursework, but the significance of soft skills as one transitions from a university to a professional workplace; it also enhances the understanding of an engineer's obligation to ethically improve society by harnessing technical knowledge to bring about change. The CC2541 Smart SensorTag is a device manufactured by Texas Instruments that focuses on the use of wireless sensors to create low energy applications, or apps; it is equipped with Bluetooth Smart, which enables it to communicate wirelessly with similar devices like smart phones and computers, assisting greatly in app development. The device contains six built-in sensors, which can be utilized to track and log personal data in real-time; these sensors include a gyroscope, accelerometer, humidifier, thermometer, barometer, and magnetometer. By combining the data obtained through the sensors with the ability to communicate wirelessly, the SensorTag can be used to develop apps in multiple fields, including fitness, recreation, health, safety, and more. Team SensorTag chose to focus on health and safety issues to complete its capstone project, creating applications intended for use by senior citizens who live alone or in assisted care homes. Using the SensorTag's ability to track multiple local variables, the team worked to collect data that verified the accuracy and quality of the sensors through repeated experimental trials. Once the sensors were tested, the team developed applications accessible via smart phones or computers to trigger an alarm and send an alert via vibration, e-mail, or Tweet if the SensorTag detects a fall. The fall detection service utilizes the accelerometer and gyroscope sensors with the hope that such a system will prevent severe injuries among the elderly, allow them to function more independently, and improve their quality of life, which is the obligation of engineers to better through their work.
ContributorsMartin, Katherine Julia (Author) / Thornton, Trevor (Thesis director) / Goryll, Michael (Committee member) / Electrical Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135734-Thumbnail Image.png
Description
This paper analyzes existing literature regarding how excessive aggravating stimuli in a hospital environment can reduce the quality and quantity of sleep. The sick and injured are most sensitive to aggravating stimuli and the most vulnerable to poor sleep conditions. For individuals with anxiety, stress, hypersensitivity, or conditions such as

This paper analyzes existing literature regarding how excessive aggravating stimuli in a hospital environment can reduce the quality and quantity of sleep. The sick and injured are most sensitive to aggravating stimuli and the most vulnerable to poor sleep conditions. For individuals with anxiety, stress, hypersensitivity, or conditions such as Autism Spectrum Disorder (ASD), as additional stress during rest periods could seriously harm development and overall well-being. While solutions have been proposed and tested, there is no one solution to the problem. One possible solution is to design a device that monitors a patient's room and alerts a nurse or parent of aggravating stimuli so that it can be removed.
ContributorsKhan, Zarah Noor (Author) / Goryll, Michael (Thesis director) / Adams, James B. (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05