Matching Items (477)
149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
ContributorsMosley, James (Author) / Morrell, Darryl (Committee member) / Cochran, Douglas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Roberts, Chell (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149780-Thumbnail Image.png
Description
The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices,

The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices, including the iPhone, iPod touch and the latest in the family - the iPad, are among the well-known and widely used mobile devices today. Their advanced multi-touch interface and improved processing power can be exploited for engineering and STEM demonstrations. Moreover, these devices have become a part of everyday student life. Hence, the design of exciting mobile applications and software represents a great opportunity to build student interest and enthusiasm in science and engineering. This thesis presents the design and implementation of a portable interactive signal processing simulation software on the iOS platform. The iOS-based object-oriented application is called i-JDSP and is based on the award winning Java-DSP concept. It is implemented in Objective-C and C as a native Cocoa Touch application that can be run on any iOS device. i-JDSP offers basic signal processing simulation functions such as Fast Fourier Transform, filtering, spectral analysis on a compact and convenient graphical user interface and provides a very compelling multi-touch programming experience. Built-in modules also demonstrate concepts such as the Pole-Zero Placement. i-JDSP also incorporates sound capture and playback options that can be used in near real-time analysis of speech and audio signals. All simulations can be visually established by forming interactive block diagrams through multi-touch and drag-and-drop. Computations are performed on the mobile device when necessary, making the block diagram execution fast. Furthermore, the extensive support for user interactivity provides scope for improved learning. The results of i-JDSP assessment among senior undergraduate and first year graduate students revealed that the software created a significant positive impact and increased the students' interest and motivation and in understanding basic DSP concepts.
ContributorsLiu, Jinru (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Kostas (Committee member) / Qian, Gang (Committee member) / Arizona State University (Publisher)
Created2011
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
150380-Thumbnail Image.png
Description
Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in the array, and varying weather conditions. With the introduction of smarter inverters and solar modules, the data obtained from the photovoltaic array can be used to dynamically modify the array topology and improve the array power output. This is beneficial especially when module mismatches such as shading, soiling and aging occur in the photovoltaic array. This research focuses on the topology optimization of PV arrays under shading conditions using measurements obtained from a PV array set-up. A scheme known as topology reconfiguration method is proposed to find the optimal array topology for a given weather condition and faulty module information. Various topologies such as the series-parallel (SP), the total cross-tied (TCT), the bridge link (BL) and their bypassed versions are considered. The topology reconfiguration method compares the efficiencies of the topologies, evaluates the percentage gain in the generated power that would be obtained by reconfiguration of the array and other factors to find the optimal topology. This method is employed for various possible shading patterns to predict the best topology. The results demonstrate the benefit of having an electrically reconfigurable array topology. The effects of irradiance and shading on the array performance are also studied. The simulations are carried out using a SPICE simulator. The simulation results are validated with the experimental data provided by the PACECO Company.
ContributorsBuddha, Santoshi Tejasri (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Thesis advisor) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2011
Description

The concept of Nature Made Candles was to “educate candle lovers on the importance of knowing what is in the candle. Everyone should know what they are inhaling...no matter how nice (or not) it smells. Earth needed a candle for enjoying scents and sights without hindering health, so we made

The concept of Nature Made Candles was to “educate candle lovers on the importance of knowing what is in the candle. Everyone should know what they are inhaling...no matter how nice (or not) it smells. Earth needed a candle for enjoying scents and sights without hindering health, so we made one.” The objective evolved into educating the student population of Arizona State University (ASU) about what ingredients go into commercial candles, with a particular focus on the wax and scent, as well as giving students a free candle that emulated the holistic ingredients they were educated on. This project was designed to be a quality improvement and health promotion project with an emphasis on the ASU student population. The purpose of the project was to find a type of candle that was friendly to the lungs of all individuals who wanted candles in their household.

ContributorsMuenchen, Cassandra (Co-author) / Waterman, Grace (Co-author) / Jaurigue, Lisa (Thesis director) / Kenny, Katherine (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148163-Thumbnail Image.png
Description

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which stress negatively affects the body. The effects stress has on the endocrine system, specifically on the hypothalamic-pituitary-thyroid axis (HPT) and hypothalamic-pituitary-adrenal axis (HPA), is discussed, and additionally, at home de-stressing methods are researched. The study included a set of participants at Arizona State University. The method took place over the course of 2 weeks: one normal week, and the other with the implementation of a de-stressing method. The normal week involved the participants living their daily lives with the addition of a stress-measuring survey, while the second week involved implementing a de-stressing method and stress-measuring survey. The purpose of this study was to discover if there was a correlation between performing these relaxation activities and decreasing stress levels in ASU students. The results found that students reported they felt more relaxed and calm after the activities. Overall, this thesis provides information and first hand research on the effects of stress and stress-reducing activities and discusses the importance of maintaining lower stress levels throughout everyday life.

ContributorsWeissmann, Megan Diane (Co-author) / Gebara, Nayla (Co-author) / Don, Rachael (Thesis director) / Irving, Andrea (Committee member) / Kizer, Elizabeth (Committee member) / College of Health Solutions (Contributor) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148040-Thumbnail Image.png
Description

Purpose: This qualitative research aimed to create a developmentally and gender-appropriate game-based intervention to promote Human Papillomavirus (HPV) vaccination in adolescents. <br/>Background: Ranking as the most common sexually transmitted infection, about 80 million Americans are currently infected by HPV, and it continues to increase with an estimated 14 million new

Purpose: This qualitative research aimed to create a developmentally and gender-appropriate game-based intervention to promote Human Papillomavirus (HPV) vaccination in adolescents. <br/>Background: Ranking as the most common sexually transmitted infection, about 80 million Americans are currently infected by HPV, and it continues to increase with an estimated 14 million new cases yearly. Certain types of HPV have been significantly associated with cervical, vaginal, and vulvar cancers in women; penile cancers in men; and oropharyngeal and anal cancers in both men and women. Despite HPV vaccination being one of the most effective methods in preventing HPV-associated cancers, vaccination rates remain suboptimal in adolescents. Game-based intervention, a novel medium that is popular with adolescents, has been shown to be effective in promoting health behaviors. <br/>Methods: Sample/Sampling. We used purposeful sampling to recruit eight adolescent-parent dyads (N = 16) which represented both sexes (4 boys, 4 girls) and different racial/ethnic groups (White, Black, Latino, Asian American) in the United States. The inclusion criteria for the dyads were: (1) a child aged 11-14 years and his/her parent, and (2) ability to speak, read, write, and understand English. Procedure. After eligible families consented to their participation, semi-structured interviews (each 60-90 minutes long) were conducted with each adolescent-parent dyad in a quiet and private room. Each dyad received $50 to acknowledge their time and effort. Measure. The interview questions consisted of two parts: (a) those related to game design, functioning, and feasibility of implementation; (b) those related to theoretical constructs of the Health Belief Model (HBM) and the Theory of Planned Behavior (TPB). Data analysis. The interviews were audio-recorded with permission and manually transcribed into textual data. Two researchers confirmed the verbatim transcription. We use pre-developed codes to identify each participant’s responses and organize data and develop themes based on the HBM and TPB constructs. After the analysis was completed, three researchers in the team reviewed the results and discussed the discrepancies until a consensus is reached.<br/>Results: The findings suggested that the most common motivating factors for adolescents’ HPV vaccination were its effectiveness, benefits, convenience, affordable cost, reminders via text, and recommendation by a health care provider. Regarding the content included in the HPV game, participants suggested including information about who and when should receive the vaccine, what is HPV and the vaccination, what are the consequences if infected, the side effects of the vaccine, and where to receive the vaccine. The preferred game design elements were: 15 minutes long, stories about fighting or action, option to choose characters/avatars, motivating factors (i.e., rewards such as allowing users to advance levels and receive coins when correctly answering questions), use of a portable electronic device (e.g., tablet) to deliver the education. Participants were open to multiplayer function which assists in a facilitated conversation about HPV and the HPV vaccine. Overall, the participants concluded enthusiasm for an interactive yet engaging game-based intervention to learn about the HPV vaccine with the goal to increase HPV vaccination in adolescents. <br/>Implications: Tailored educational games have the potential to decrease the stigma of HPV and HPV vaccination, increasing communication between the adolescent, parent, and healthcare provider, as well as increase the overall HPV vaccination rate.

ContributorsBeaman, Abigail Marie (Author) / Chen, Angela Chia-Chen (Thesis director) / Amresh, Ashish (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Objective: This study looked at three key variables of fear of COVID-19, preventative behaviors, and vaccination intent among college students in the United Sates. In addition, the three key variables were compared between genders, age groups, race groups, and over time to see if there were any significant findings. <br/>Method:

Objective: This study looked at three key variables of fear of COVID-19, preventative behaviors, and vaccination intent among college students in the United Sates. In addition, the three key variables were compared between genders, age groups, race groups, and over time to see if there were any significant findings. <br/>Method: This longitudinal study consisted of two anonymous online surveys administered on REDCap before and after a COVID-19 vaccine became available. <br/>Results: The findings suggested positive correlations between students’ fear of COVID-19 and their preventative behaviors with the passing of time. Hispanic/Latino participants had significantly higher fear of COVID-19 scores compared to Non-Hispanic Whites and other races at Wave I and II. Participants between 25 and 30 years old had a marginally greater difference fear of COVID-19 score compared to those less than 25. Females had significantly higher mean preventative behavior score than males at Wave II. There was a significant association between race/ethnicity groups and vaccination intent. <br/>Conclusion: Knowing why different groups do not engage in recommended preventative behaviors or receive vaccinations can tell us more about what tailored interventions may need to be developed and implemented to promote health and wellbeing in this population. Further research needs to be done regarding race, gender, and age and how these different groups of college students are responding to COVID-19 and why.

ContributorsFones, Shaelyn Kaye (Author) / Chen, Angela (Thesis director) / Han, SeungYong (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147990-Thumbnail Image.png
Description

In a healthcare system already struggling with burnout among its professionals, the COVID-19 pandemic presented a barrage of personal and occupational strife to US healthcare workers. Structural and everyday discrimination contributed to the health inequities of people of color in the US, exacerbated by COVID-19-related racism and xenophobia. There is

In a healthcare system already struggling with burnout among its professionals, the COVID-19 pandemic presented a barrage of personal and occupational strife to US healthcare workers. Structural and everyday discrimination contributed to the health inequities of people of color in the US, exacerbated by COVID-19-related racism and xenophobia. There is little research regarding the effects of COVID-19 and related and/or concurring discrimination upon minority nursing staff, despite their importance in supporting the diverse American patient population with culturally competent, tireless care amid the pandemic. This cross-sectional survey study aimed to examine 1) the relationships between discrimination, social support, resilience, and quality of life among minority nursing staff in the US during COVID-19, and 2) the differences of discrimination, social support resilience, and quality of life among minority nursing staff between different racial/ethnic groups during COVID-19. The sample (n = 514) included Black/African American (n = 161, 31.4%), Latinx/Hispanic (n = 131, 25.5%), Asian (n = 87, 17%), Native American/Alaskan Native (n = 69, 13.5%), and Pacific Islander (n = 65, 12.7%) nursing staff from 47 US states. The multiple regression results showed that witnessing discrimination was associated with a lower quality of life score, while higher social support and resilience scores were associated with higher quality of life scores across all racial groups. Furthermore, while participants from all racial groups witnessed and experienced discrimination, Hispanic/Latinx nursing staff experienced discrimination most commonly, alongside having lowest quality of life and highest resilience scores. Native American/Alaskan Native nursing staff had similarly high discrimination and low quality of life, although low resilience scores. Our findings suggest that minority nursing staff who have higher COVID-19 morbidity and mortality rates (Hispanic/Latinx, Native American/Alaskan Native) were left more vulnerable to negative effects from discrimination. Hispanic/Latinx nursing staff reported a relatively higher resilience score than all other groups, potentially attributed to the positive effects of biculturality in the workplace, however, the low average quality of life score suggests a simultaneous erosion of well-being. Compared to all other groups, Native American and Alaskan Native nursing staff’s low resilience and quality of life scores suggest a potential compounding effect of historical trauma affecting their well-being, especially in contrast to Hispanic/Latinx nursing staff. This study has broader implications for research on the lasting effects of COVID-19 on minority healthcare workers’ and communities’ well-being, especially regarding Hispanic/Latinx and Native American/Alaskan Native nursing staff.

ContributorsLaufer, Annika Noreen (Author) / Chen, Angela (Thesis director) / Fries, Kathleen (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05