Matching Items (7)
134-Thumbnail Image.png
Description

An increase in population and need to protect the planet has created many initiatives and research goals in developing alternatives methods of fueling. Federal and state policies have provided a push for industries to find ways to of reducing their impact on the environment while maintaining competitiveness. In the sector

An increase in population and need to protect the planet has created many initiatives and research goals in developing alternatives methods of fueling. Federal and state policies have provided a push for industries to find ways to of reducing their impact on the environment while maintaining competitiveness. In the sector of alternative fuels, large policies such as the Renewable Fuel Standards (RFS) in the United States are making goals to reduce vehicular fuel from coal and oil, and focus on alternative fuels such as ethanol and biodiesel. Along with the RFS and other federal policies, states are introducing independent initiatives to promote the use of alternative fuels.

Research has shown that other crops besides corn can feasibly be used to produce ethanol for fuel use. One of the major crops of interest currently is switchgrass (Panicum Virgatum L.) because of its ability to grow under a variety of weather conditions and soil types. Switchgrass does not require as much maintenance as corn and is a perennial grass that can have high yielding fields for up to 9 years.

This report focuses on the impacts from using switchgrass-derived ethanol to meet the state of Arizona’s policy to have government fleet vehicles operating on alternative fuels. The study uses a life cycle assessment (LCA) approach to evaluate 22 million gallons of ethanol produced in Arizona and stored at fueling stations for use. Impacts in land use, global warming, and water quality are evaluated using software tools and databases in Ecoinvent and Simapro.

The results of the study indicate that the cultivation and harvest phase of the process will contribute the most to negative environmental impacts. According to the study, application of heavy nutrient fertilizer and the machinery needed for the additional agriculture have the potential to contribute over 36 million moles of hydrogen and 89 million CTU eq. to the air, soil, and water.

Created2013-05
135368-Thumbnail Image.png
Description
In developed countries, municipalities deliver drinking water to constituents through water distribution systems. These transport water from a treatment plant to homes, restaurants, and any other site of end use. Proper water distribution system infrastructure functionality is a critical concern to city planners and managers because component failures within these

In developed countries, municipalities deliver drinking water to constituents through water distribution systems. These transport water from a treatment plant to homes, restaurants, and any other site of end use. Proper water distribution system infrastructure functionality is a critical concern to city planners and managers because component failures within these systems restrict or prevent the ability to deliver water. The reduced capacity to deliver water forces the health and well being of all citizens into jeopardy. The breakdown of a component can even spark the failure of several more components, causing a sequence of cascading failures with catastrophic consequences. To make matters worse, some forms of component failures are unpredictable and it is impossible to foresee every possible failure that could occur. In order to prevent cataclysmic losses that are experienced during system failures, the development of resilient water distribution infrastructure is vital. A resilient water distribution system possesses an adaptive capacity to mitigate the loss of service resulting from component failures. Traditionally, infrastructure resilience research has been retrospective in nature, analyzing the infrastructure system after it suffered a failure event. However, this research project takes water distribution resilience research in a new direction. The research identifies the Sensing Anticipating, Adaptation, and Learning processes that are inherent in the current operations of each component in the water distribution system (pumps, pipes, valves, tanks, nodes). Additional SAAL processes have been recommended for the components that lack adaptive management in current practice. This workis unique in that it applies resilience theory to water distribution systems in an anticipatory manner. This anticipatory application of resilience will provide operators with actionable process for them to implement during failure situations. In this setting, resilience is applied to existing systems for noticeable improvements in operation during failure situations.
ContributorsRodriguez, Jordan Robert (Author) / Seager, Thomas (Thesis director) / Eisenberg, Daniel (Committee member) / Bondank, Emily (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
152935-Thumbnail Image.png
Description
Overall, biofuels play a significant role in future energy sourcing and deserve thorough researching and examining for their best use in achieving sustainable goals. National and state policies are supporting biofuel production as a sustainable option without a holistic view of total impacts. The analysis from this research connects to

Overall, biofuels play a significant role in future energy sourcing and deserve thorough researching and examining for their best use in achieving sustainable goals. National and state policies are supporting biofuel production as a sustainable option without a holistic view of total impacts. The analysis from this research connects to policies based on life cycle sustainability to identify other environmental impacts beyond those specified in the policy as well as ethical issues that are a concern. A Life cycle assessment (LCA) of switchgrass agriculture indicates it will be challenging to meet U.S. Renewable Fuel Standards with only switchgrass cellulosic ethanol, yet may be used for California's Low Carbon Fuel Standard. Ethical dilemmas in food supply, land conservation, and water use can be connected to biofuel production and will require evaluation as policies are created. The discussions around these ethical dilemmas should be had throughout the process of biofuel production and policy making. Earth system engineering management principles can help start the discussions and allow anthropocentric and biocentric viewpoints to be heard.
ContributorsHarden, Cheyenne (Author) / Landis, Amy E. (Thesis advisor) / Allenby, Braden (Committee member) / Khanna, Vikas (Committee member) / Arizona State University (Publisher)
Created2014
157945-Thumbnail Image.png
Description
Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the

Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the intensity and duration of individual exposure to heat. As cities globally are shifting priorities towards non-motorized and public transit travel, more residents are expected to experience the city on their feet. Thus, physical conditions as well as psychological perception of the environment that affect thermal comfort will become paramount. Phoenix, Arizona, is used as a case study to examine the effectiveness of current public transit and street infrastructure to reduce heat exposure and affect the thermal comfort of walkers and public transit users.

The City of Phoenix has committed to public transit improvements in the Transportation 2050 plan and has recently adopted a Complete Streets Policy. Proposed changes include mobility improvements and creating a safe and comfortable environment for non-motorized road participants. To understand what kind of improvements would benefit thermal comfort the most, it is necessary to understand heat exposure at finer spatial scales, explore whether current bus shelter designs are adequate in mitigating heat-health effects, and comprehensively assess the impact of design on physical, psychological and behavioral aspects of thermal comfort. A study conducted at bus stops in one Phoenix neighborhood examined grey and green infrastructure types preferred for cooling and found relationships between perception of pleasantness and thermal sensation votes. Walking interviews conducted in another neighborhood event examined the applicability of a framework for walking behavior under the stress of heat, and how differences between the streets affected perceptions of the walkers. The interviews revealed that many of the structural themes from the framework of walking behavior were applicable, however, participants assessed the majority of the elements in their walk from a heat mitigation perspective. Finally, guiding questions for walkability in hot and arid climates were developed based on the literature review and results from the empirical studies. This dissertation contributes to filling the gap between walkability and outdoor thermal comfort, and presents methodology and findings that can be useful to address walkability and outdoor thermal comfort in the world’s hot cities as well as those in temperate climates that may face similar climate challenges in the future as the planet warms.
ContributorsDzyuban, Yuliya (Author) / Redman, Charles L. (Thesis advisor) / Coseo, Paul J. (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
128356-Thumbnail Image.png
Description

Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple

Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41–87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

ContributorsReyna, Janet (Author) / Chester, Mikhail Vin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-05-15
142-Thumbnail Image.png
Description

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking lots are repurposed for residential development. Life cycle building (construction, use, and energy production) and transportation (manufacturing, operation, and energy production) changes were included and energy use and greenhouse gas emissions were evaluated in addition to the potential for respiratory impacts and smog formation. All light rail infill scenarios are compared against new single family home construction in outlying areas.

Overview of Results: In the most conservative scenario, the Phoenix area can place 2,200 homes near light rail and achieve 9-15% reductions in energy use and emissions. By allowing multi-family apartments to fill vacant lots, 12,000 new dwelling units can be infilled achieving a 28-42% reduction. When surface lots are developed in addition to vacant lots then multi-family apartment buildings around light rail can deliver 30-46% energy and environmental reductions. These reductions occur even after new trains are put into operation to meet the increased demand.

Created2013
Description

Building energy assessment often focuses on the use of electricity and natural gas during the use phase of a structure while ignoring the energy investments necessary to construct the facility. This research develops a methodology for quantifying the “embedded” energy and greenhouse gases (GHG) in the building infrastructure of an

Building energy assessment often focuses on the use of electricity and natural gas during the use phase of a structure while ignoring the energy investments necessary to construct the facility. This research develops a methodology for quantifying the “embedded” energy and greenhouse gases (GHG) in the building infrastructure of an entire metropolitan region. “Embedded” energy and GHGs refer to the energy necessary to manufacture materials and construct the infrastructure. Using these methods, a case study is developed for Los Angeles County.