Matching Items (3)
141121-Thumbnail Image.png
Description

Provides initiatives that leverage the inclusion of Latinas in computer science education.

Created2021 (year uncertain)
Description
****Project Disclaimer: Unfortunately due to the COVID-19 outbreak during Spring 2020, ASU shut down in-person classes and campus facilities as means to prevent the spread of the virus. This meant though that a polished final podcast recording was unable to be made. Instead, a first-run, practice podcast recording that was

****Project Disclaimer: Unfortunately due to the COVID-19 outbreak during Spring 2020, ASU shut down in-person classes and campus facilities as means to prevent the spread of the virus. This meant though that a polished final podcast recording was unable to be made. Instead, a first-run, practice podcast recording that was recorded before the shut down is uploaded in its stead as a reference as to how the final was intended to sound and be produced. ****


Cellular hypertrophy is an anaerobically-based, adaptive process that mammalian skeletal muscle undergoes in response to damage resulting from unaccustomed force generation by the muscle. Hypertrophy allows for the muscle tissue to recover from the immediate injury and also to be rebuilt more capable of withstanding producing the same amount of force without injury, should it happen again. This means the end result of an adapted muscle is an overall more efficient tissue. The ability to regenerate after damage to the structure and function of the muscle tissue is a highly orchestrated event involving multiple steps and key events to occur. Most briefly, a mechanical load is attempted to be lifted but due to demanding a high amount of contractile force to lift, it causes microdamage to the structural and contractile elements of muscle fiber’s sarcomeres. In addition to an inflammatory response, satellite cells, as a part of a myogenic response, are activated to invade the fiber and then permanently reside inside to produce new proteins that will replace the damaged and necrotized proteins. This addition of cellular content, repeated over multiple times, results in the increased diameter of the fibers and manifests in the visual appearance of skeletal muscle hypertrophy. These steps have been listed off devoid of the contexts in which it takes for these to occur and will be addressed within this thesis.
ContributorsDwyer, Lauren Mingna Carol (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffery (Committee member) / School of Life Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130932-Thumbnail Image.png
Description
Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due

Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due to their reliance on interactions that maximize efficiency within their complicated colony structure and array of member roles, eusocial insects serve as an excellent model for animal communication. Among eusocial insects, ants are some of the most heavily researched, with a tremendous amount of literature focused on their cuticular hydrocarbons. Along with serving as a waterproofing agent, cuticular hydrocarbons also play a major role in recognition and communication in these insects. By studying the importance of hydrocarbons in ant social structure, their tremendously specialized olfactory system, and the use of learning assays in its study, parallels between communication in ants and other animals are revealed, demonstrating how ants serve as a relevant model for animal communication as a whole.
ContributorsSpirek, Benton Forest Ensminger (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12