Matching Items (8)
Filtering by

Clear all filters

152186-Thumbnail Image.png
Description
Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic

Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic power of Drosophila melanogaster, these studies assess the developmental mechanisms underlying single neuron morphology, and subsequently investigate the functional and behavioral consequences resulting from developmental irregularity. Significant insights into the molecular mechanisms that contribute to dendrite development come from studies of Down syndrome cell adhesion molecule (Dscam). While these findings have been garnered primarily from sensory neurons whose arbors innervate a two-dimensional plane, it is likely that the principles apply in three-dimensional central neurons that provide the structural substrate for synaptic input and neural circuit formation. As such, this dissertation supports the hypothesis that neuron type impacts the realization of Dscam function. In fact, in Drosophila motoneurons, Dscam serves a previously unknown cell-autonomous function in dendrite growth. Dscam manipulations produced a range of dendritic phenotypes with alteration in branch number and length. Subsequent experiments exploited the dendritic alterations produced by Dscam manipulations in order to correlate dendritic structure with the suggested function of these neurons. These data indicate that basic motoneuron function and behavior are maintained even in the absence of all adult dendrites within the same neuron. By contrast, dendrites are required for adjusting motoneuron responses to specific challenging behavioral requirements. Here, I establish a direct link between dendritic structure and neuronal function at the level of the single cell, thus defining the structural substrates necessary for conferring various aspects of functional motor output. Taken together, information gathered from these studies can inform the quest in deciphering how complex cell morphologies and networks form and are precisely linked to their function.
ContributorsHutchinson, Katie Marie (Author) / Duch, Carsten (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newfeld, Stuart (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
152705-Thumbnail Image.png
Description
Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin

Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin translating extracellular signals into intracellular messages. Such signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell movement, transcription, translation, proliferation and differentiation. This dissertation seeks to dissect and examine critical signaling pathways involved in the regulation of proliferation in neural stem cells (Chapter 2) and the regulation of Glioblastoma Multiforme pathogenesis (GBM; Chapter 3). In Chapter 2 of this dissertation, we hypothesize that the mTOR signaling pathway plays a significant role in the determination of neural stem cell proliferation given its control of cell growth, metabolism and survival. We describe the effect of inhibition of mTOR signaling on neural stem cell proliferation using animal models of aging. Our results show that the molecular method of targeted inhibition may result in differential effects on neural stem cell proliferation as the use of rapamycin significantly reduced proliferation while the use of metformin did not. Abnormal signaling cascades resulting in unrestricted proliferation may lead to the development of brain cancer, such as GBM. In Chapter 3 of this dissertation, we hypothesize that the inhibition of the protein kinase, aPKCλ results in halted GBM progression (invasion and proliferation) due to its central location in multiple signaling cascades. Using in-vitro and in-vivo models, we show that aPKCλ functions as a critical node in GBM signaling as both cell-autonomous and non-cell-autonomous signaling converge on aPKCλ resulting in pathogenic downstream effects. This dissertation aims to uncover the molecular mechanisms involved in cell signaling pathways which are responsible for critical cellular effects such as proliferation, invasion and transcriptional regulation.
ContributorsKusne, Yael (Author) / Sanai, Nader (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Tran, Nhan (Committee member) / Hammer, Ronald (Committee member) / Narayanan, Vinodh (Committee member) / Shapiro, Joan (Committee member) / Arizona State University (Publisher)
Created2014
149903-Thumbnail Image.png
Description
Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they

Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they have demonstrated therapeutic utility and clinical efficacy for neurological and psychiatric disorders. When applied for therapeutic applications, these techniques suffer from limitations that hinder the progression of its intended use to treat compromised brain function. DBS requires an invasive surgical procedure that surfaces complications from infection, longevity of electrical components, and immune responses to foreign materials. Both TMS and tDCS circumvent the problems seen with DBS as they are noninvasive procedures, but they fail to produce the spatial resolution required to target specific brain structures. Realizing these restrictions, we sought out to use ultrasound as a neurostimulation modality. Ultrasound is capable of achieving greater resolution than TMS and tDCS, as we have demonstrated a ~2mm lateral resolution, which can be delivered noninvasively. These characteristics place ultrasound superior to current neurostimulation methods. For these reasons, this dissertation provides a developed protocol to use transcranial pulsed ultrasound (TPU) as a neurostimulation technique. These investigations implement electrophysiological, optophysiological, immunohistological, and behavioral methods to elucidate the effects of ultrasound on the central nervous system and raise questions about the functional consequences. Intriguingly, we showed that TPU was also capable of stimulating intact sub-cortical circuits in the anesthetized mouse. These data reveal that TPU can evoke synchronous oscillations in the hippocampus in addition to increasing expression of brain-derived neurotrophic factor (BDNF). Considering these observations, and the ability to noninvasively stimulate neuronal activity on a mesoscale resolution, reveals a potential avenue to be effective in clinical settings where current brain stimulation techniques have shown to be beneficial. Thus, the results explained by this dissertation help to pronounce the significance for these protocols to gain translational recognition.
ContributorsTufail, Yusuf Zahid (Author) / Tyler, William J (Thesis advisor) / Duch, Carsten (Committee member) / Muthuswamy, Jitendran (Committee member) / Santello, Marco (Committee member) / Tillery, Stephen H (Committee member) / Arizona State University (Publisher)
Created2011
134691-Thumbnail Image.png
Description
Rett syndrome is a genetically based, X-linked neurodevelopmental disorder that affects 1 in 10,000 live female births. Approximately 95-97% of Rett syndrome cases are attributed to a mutation in the MECP2 gene. In the laboratory setting, key neuropathological phenotypes of Rett syndrome include small neuronal soma and nuclear size, increased

Rett syndrome is a genetically based, X-linked neurodevelopmental disorder that affects 1 in 10,000 live female births. Approximately 95-97% of Rett syndrome cases are attributed to a mutation in the MECP2 gene. In the laboratory setting, key neuropathological phenotypes of Rett syndrome include small neuronal soma and nuclear size, increased cell packing density, and abnormal dendritic branching. Our lab previously created and characterized the A140V mouse model of atypical Rett syndrome in which the males are viable. Hippocampal and cerebellar granule neurons in A140V male mice have reduced soma and nuclear size compared to wild type. We also found that components of the mTOR pathway including rictor, 4E-BP-1, and mTOR, were reduced in A140V mutant mice. Quantitative PCR analysis also showed reduced IGFPB2 expression in A140V mice along with an upward trend in AKT levels that did not meet statistical significance. The objective of this study is i) to characterize the down regulation of AKT-mTOR pathway, and ii) to examine the effect of a genetic strategy to rescue mTOR pathway deficiencies in Mecp2 mutant mouse model. Genetic rescue of the mTOR pathway downregulation was done by crossing heterozygous female A140V mice with heterozygous male Tsc2 mice. Quantitative PCR analysis of A140V_Tsc2 RNA expression supported genetic rescue of mTOR pathway components, however, more testing is needed to fully characterize the rescue effect. Western blot analysis also showed reduction in phosphorylated AKT in Mecp2 A140V and T158A mutant mice, however, more testing is still needed to characterize the mTOR pathway in A140V_Tsc2 mice. Finally, other methods, such as a pharmacological approach, or transfection to increase mTOR pathway activity in cell lines, will be tested to determine if rescue of mTOR pathway activity ameliorate the Rett syndrome phenotype.
ContributorsGerald, Brittany Madison (Author) / Newbern, Jason (Thesis director) / Narayanan, Vinodh (Committee member) / Rangasamy, Sampath (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
151450-Thumbnail Image.png
Description
Sensory gating is a process by which the nervous system preferentially admits stimuli that are important for the organism while filtering out those that may be meaningless. An optimal sensory gate cannot be static or inflexible, but rather plastic and informed by past experiences. Learning enables sensory gates to recognize

Sensory gating is a process by which the nervous system preferentially admits stimuli that are important for the organism while filtering out those that may be meaningless. An optimal sensory gate cannot be static or inflexible, but rather plastic and informed by past experiences. Learning enables sensory gates to recognize stimuli that are emotionally salient and potentially predictive of positive or negative outcomes essential to survival. Olfaction is the only sensory modality in mammals where sensory inputs bypass conventional thalamic gating before entering higher emotional or cognitive brain regions. Thus, olfactory bulb circuits may have a heavier burden of sensory gating compared to other primary sensory circuits. How do the primary synapses in an olfactory system "learn"' in order to optimally gate or filter sensory stimuli? I hypothesize that centrifugal neuromodulator serotonin serves as a signaling mechanism by which primary olfactory circuits can experience learning informed sensory gating. To test my hypothesis, I conditioned genetically-modified mice using reward or fear olfactory-cued learning paradigms and used pharmacological, electrophysiological, immunohistochemical, and optical imaging approaches to assay changes in serotonin signaling or functional changes in primary olfactory circuits. My results indicate serotonin is a key mediator in the acquisition of olfactory fear memories through the activation of its type 2A receptors in the olfactory bulb. Functionally within the first synaptic relay of olfactory glomeruli, serotonin type 2A receptor activation decreases excitatory glutamatergic drive of olfactory sensory neurons through both presynaptic and postsynaptic mechanisms. I propose that serotonergic signaling decreases excitatory drive, thereby disconnecting olfactory sensory neurons from odor responses once information is learned and its behavioral significance is consolidated. I found that learning induced chronic changes in the density of serotonin fibers and receptors, which persisted in glomeruli encoding the conditioning odor. Such persistent changes could represent a sensory gate stabilized by memory. I hypothesize this ensures that the glomerulus encoding meaningful odors are much more sensitive to future serotonin signaling as such arousal cues arrive from centrifugal pathways originating in the dorsal raphe nucleus. The results advocate that a simple associative memory trace can be formed at primary sensory synapses to facilitate optimal sensory gating in mammalian olfaction.
ContributorsLi, Monica (Author) / Tyler, William J (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Duch, Carsten (Committee member) / Neisewander, Janet (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2012
137833-Thumbnail Image.png
Description
Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only

Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only children and older adults benefitted. The present study investigated whether college-aged students benefit from speaking aloud while performing a fluid intelligence test. Subjects performed a battery of working memory and intelligence tasks silently. Once they had completed each task, the participants took them again, though this time they spoke aloud while completing the tests. Results showed that subjects did insignificantly worse on the working memory tests when speaking aloud. However, subjects performed significantly better on the measures of fluid intelligence while speaking aloud as opposed to doing them silently. At an individual differences level, low working memory capacity participants benefited more from speaking aloud than the high working memory ones. Finally, we found a positive correlation between working memory scores and fluid intelligence scores, offering further evidence that the two constructs are related, yet different.
ContributorsRice, Z. Douglas (Author) / Brewer, Gene (Thesis director) / Duch, Carsten (Committee member) / Ball, Hunter (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
154043-Thumbnail Image.png
Description
Methyl-CpG binding protein 2 (MECP2) is a widely abundant, multifunctional regulator of gene expression with highest levels of expression in mature neurons. In humans, both loss- and gain-of-function mutations of MECP2 cause mental retardation and motor dysfunction classified as either Rett Syndrome (RTT, loss-of-function) or MECP2 Duplication Syndrome (MDS, gain-of-function).

Methyl-CpG binding protein 2 (MECP2) is a widely abundant, multifunctional regulator of gene expression with highest levels of expression in mature neurons. In humans, both loss- and gain-of-function mutations of MECP2 cause mental retardation and motor dysfunction classified as either Rett Syndrome (RTT, loss-of-function) or MECP2 Duplication Syndrome (MDS, gain-of-function). At the cellular level, MECP2 mutations cause both synaptic and dendritic defects. Despite identification of MECP2 as a cause for RTT nearly 16 years ago, little progress has been made in identifying effective treatments. Investigating major cellular and molecular targets of MECP2 in model systems can help elucidate how mutation of this single gene leads to nervous system and behavioral defects, which can ultimately lead to novel therapeutic strategies for RTT and MDS. In the work presented here, I use the fruit fly, Drosophila melanogaster, as a model system to study specific cellular and molecular functions of MECP2 in neurons. First, I show that targeted expression of human MECP2 in Drosophila flight motoneurons causes impaired dendritic growth and flight behavioral performance. These effects are not caused by a general toxic effect of MECP2 overexpression in Drosophila neurons, but are critically dependent on the methyl-binding domain of MECP2. This study shows for the first time cellular consequences of MECP2 gain-of-function in Drosophila neurons. Second, I use RNA-Seq to identify KIBRA, a gene associated with learning and memory in humans, as a novel target of MECP2 involved in the dendritic growth phenotype. I confirm bidirectional regulation of Kibra by Mecp2 in mouse, highlighting the translational utility of the Drosophila model. Finally, I use this system to identify a novel role for the C-terminus in regulating the function of MECP in apoptosis and verify this finding in mammalian cell culture. In summary, this work has established Drosophila as a translational model to study the cellular effects of MECP2 gain-of-function in neurons, and provides insight into the function of MECP2 in dendritic growth and apoptosis.
ContributorsWilliams, Alison (Author) / Duch, Carsten (Thesis advisor) / Orchinik, Miles (Committee member) / Gallitano, Amelia (Committee member) / Huentelman, Matthew (Committee member) / Narayanan, Vinodh (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2015
131741-Thumbnail Image.png
Description
Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I,

Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I, III and IV of the ETC. To understand this mechanism, it is necessary to perform a comprehensive analysis of energy metabolism and oxidative phosphorylation (OXPHOS) among impacted patients. Alterations to this gene vary, with the most documented as a single-splice-site mutation (c.626C>T). Here, we discuss MTFMT involvement in mitochondrial protein translation and neurodegenerative disorders, such as Leigh Syndrome and combined OXPHOS deficiency, in two families. We aim to delineate the impact of OXPHOS dysfunction in patients presenting with MTFMT mutation.
ContributorsChain, Kelsey (Author) / Chen, Qiang (Thesis director) / Rangasamy, Sampathkumar (Committee member) / Narayanan, Vinodh (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05