Matching Items (13)
187414-Thumbnail Image.png
Description
Rare-earth tritellurides (RTe3) are two-dimensional materials with unique quantum properties, ideal for investigating quantum phenomena and applications in supercapacitors, spintronics, and twistronics. This dissertation examines the electronic, magnetic, and phononic properties of the RTe3 family, exploring how these can be controlled using chemical pressure, cationic alloying, and external pressure.The impact

Rare-earth tritellurides (RTe3) are two-dimensional materials with unique quantum properties, ideal for investigating quantum phenomena and applications in supercapacitors, spintronics, and twistronics. This dissertation examines the electronic, magnetic, and phononic properties of the RTe3 family, exploring how these can be controlled using chemical pressure, cationic alloying, and external pressure.The impact of chemical pressure on RTe3 phononic properties was investigated through noninvasive micro-Raman spectroscopy, demonstrating the potential of optical measurements for determining charge density wave (CDW) transition temperatures. Cationic alloying studies showed seamless tuning of CDW transition temperatures by modifying lattice constants and revealed complex magnetism in alloyed RTe3 with multiple magnetic transitions. A comprehensive external pressure study examined the influence of spacing between RTe3 layers on phononic and CDW properties across the RTe3 family. Comparisons between different RTe3 materials showed LaTe3, with the largest thermodynamic equilibrium interlayer spacing (smallest chemical pressure), has the most stable CDW phases at high pressures. Conversely, CDW phases in late RTe3 systems with larger internal chemical pressures were more easily suppressed by applied pressure. The dissertation also investigated Schottky barrier realignment at RTe3/semiconductor interfaces induced by CDW transitions, revealing changes in Schottky barrier height and ideality factor around the CDW transition temperature. This indicates that chemical potential changes of RTe3 below the CDW transition temperature influence Schottky junction properties, enabling CDW state probing through interface property measurements. A detailed experimental and theoretical analysis of the oxidation process of RTe3 compounds was performed, which revealed faster degradation in late RTe3 systems. Electronic property changes, like CDW transition temperature and chemical potential, are observed as degradation progresses. Quantum mechanical simulations suggested that degradation primarily results from strong oxidizing reactions with O2 molecules, while humidity (H2O) plays a negligible role unless Te vacancies exist. Lastly, the dissertation establishes a large-area thin film deposition at relatively low temperatures using a soft sputtering technique. While focused on MoTe2 deposition, this technique may also apply to RTe3 thin film deposition. Overall, this dissertation expands the understanding of the fundamental properties of RTe3 materials and lays the groundwork for potential device applications.
ContributorsYumigeta, Kentaro (Author) / Tongay, Sefaattin (Thesis advisor) / Ponce, Fernando (Committee member) / Drucker, Jeffery (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2023
187603-Thumbnail Image.png
Description
The performance of accelerator applications like X-ray free electron lasers (XFELs)and ultrafast electron diffraction (UED) and microscopy (UEM) experiments is limited by the brightness of electron beams generated by photoinjectors. In order to maximize the brightness of an electron beam it is essential that electrons are emitted from photocathodes with the smallest possible

The performance of accelerator applications like X-ray free electron lasers (XFELs)and ultrafast electron diffraction (UED) and microscopy (UEM) experiments is limited by the brightness of electron beams generated by photoinjectors. In order to maximize the brightness of an electron beam it is essential that electrons are emitted from photocathodes with the smallest possible mean transverse energy (MTE). Metallic photocathodes hold the record for the smallest MTE ever measured at 5 meV from a Cu(100) single crystal photocathode operated near the photoemission threshold and cooled to 30 K. However such photocathodes have two major limitations: poor surface stability, and a low quantum efficiency (QE) which leads to MTE degrading non-linear photoemission effects when extracting large charge densities. This thesis investigates the efficacy of using a graphene protective layer in order to improve the stability of a Cu(110) single crystalline surface. The contribution to MTE from non-linear photoemission effects is measured from a Cu(110) single crystal photocathode at a variety of excess energies, laser fluences, and laser pulse lengths. To conclude this thesis, the design and research capabilities of the Photocathode and Bright Beams Lab (PBBL) are presented. Such a lab is required to develop cathode technology to mitigate the practical limitations of metallic photocathodes.
ContributorsKnill, Christopher John (Author) / Karkare, Siddharth (Thesis advisor) / Drucker, Jeffery (Committee member) / Kaindl, Robert (Committee member) / Teitelbaum, Samuel (Committee member) / Arizona State University (Publisher)
Created2023
132590-Thumbnail Image.png
Description
Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain

Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain is composed of sp¹ and sp³ hybridized bonds, but it also incorporates nanoparticles such as gold or possibly silver to stabilize the chain. The polyyne generated in this process is called pseudocarbyne due to its striking resemblance to the theoretical carbyne. The formation of these carbon chains is yet to be fully understood, but significant progress has been made in determining the temperature of the plasma in which the pseudocarbyne is formed. When a 532 nm pulsed laser with a pulsed energy of 250 mJ and pulse length of 10ns is used to ablate a gold target, a peak temperature of 13400 K is measured. When measured using Laser-Induced Breakdown spectroscopy (LIBS) the average temperature of the neutral carbon plasma over one second was 4590±172 K. This temperature strongly suggests that the current theoretical model used to describe the temperature at which pseudocarbyne generates is accurate.
ContributorsWala, Ryland Gerald (Co-author) / Wala, Ryland (Co-author) / Sayres, Scott (Thesis director) / Steimle, Timothy (Committee member) / Drucker, Jeffery (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Physics (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05